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Low noise high stability resonator oscillators based on high-Q monolithic sapphire

whispering gallery (WG) mode resonators have become important devices for

telecommunication, radar and metrological applications. The extremely high quality

factor of sapphire has enabled the lowest phase noise and the highest frequency stable

oscillators in the microwave regime. To create an oscillator with exceptional frequency

stability, besides a high quality factor, the resonator must have its frequency-

temperature dependence annulled at some temperature, otherwise, this dependence

allows the resonator to convert temperature fluctuations into oscillator frequency

fluctuations.

The usual electromagnetic technique of annulment is the use of paramagnetic

impurities, incidentally left over from the manufacturing process, which contribute an

opposite temperature coefficient to the temperature coefficient permittivity (TCP) of

sapphire. This technique has only been realized successfully in liquid helium

environments. Near 4 K, the thermal expansion and permittivity effects are small and

only small quantities of the paramagnetic ions are necessary to compensate their effect

on mode frequency.

In this thesis, techniques that cancel the TCP of a sapphire resonator are reviewed as

well as investigated. Details of the temperature control system required to achieve

current and target frequency stability are discussed. New methods of compensating the

frequency-temperature dependence of high-Q monolithic sapphire dielectric resonators

near liquid nitrogen temperature are presented. One technique uses monocrystalline

sapphire intentionally doped with paramagnetic Ti3+ ions. Another technique cancels the

TCP of sapphire by placing on it thin rings of a perturbation dielectric, single crystal

rutile, that has a TCP of the opposite sign and greater in magnitude. The former

technique is monolithic whereas the latter requires a composite structure.

High-resolution measurements performed at microwave frequencies between 4.2 K and

200 K, found that the compensation of the TCP of the sapphire, doped with 1000 ppm
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Ti3+ ions, was the result of the Van Vleck temperature independent paramagnetic (TIP)

susceptibility of those ions only. However the quality factor was significantly degraded.

Utilizing the second technique, WG modes were excited and examined at microwave

frequencies in the range of 8 to 14 GHz. Compensation was achieved in different modes

from 50 to 80 K, with Q-factor values varying from 5 × 106 to 3 × 107. The Q-factor in

the composite resonator was significantly higher in H-modes due to a Bragg effect that

was understood through a rigorous finite element analysis. An unloaded Q-factor of 1.5

× 107 was measured in the operational mode, nearly an order of magnitude greater than

that achievable with Ti3+ doping of sapphire at the same compensation temperature of

50 K.

New configurations of interferometric frequency discriminators (FD) for frequency

stabilization of microwave oscillators were also examined. The new FDs are arranged in

single directional (SD) (patented), bi-directional (BD) and dual reflection (DR)

configurations. A provisional patent has been applied for the latter two. In the BD

configuration, microwaves pass in both directions through each arm of the

interferometer. In the DR configuration, microwaves are reflected from the resonator as

well as the compensating arm. The FD sensitivity is compared with that for a

conventional interferometric FD and found to be 6 dB greater in the BD configuration.

Since no circulator is required within the interferometer in either the BD or the DR, the

discriminator’s phase noise floor is not limited by the circulator contribution, as is the

case for the SD configuration and the conventional interferometric FD.
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Ultra-high stability clocks are needed in many areas of experimental physics and are

essential for testing fundamental physical principles.  For example, with clocks in space

having stability of 10-16 over one day, it should be possible to make a potential 100-fold

improvement over the 1976 Gravity Probe A gravitational red-shift experiment (Vessot

1980). Local measurements between clocks of different types can be used to probe the

temporal dependence of fundamental non-gravitational constants. Atomic clocks based

on hyperfine transitions in alkali atoms (H, Cs, Rb, Hg+) will have a different

dependence of clock frequency on the fine structure constant (α), via relativistic

corrections of order (Zα)2 where Z is the atomic number. In 1995 a H-maser Hg+-ion

clock comparison set a laboratory limit of 3.7 � 10-14 per year for the secular drift of the

fine structure constant (Prestage et al. 1995). This is 100 times better than the 1976 limit

set by comparing superconducting cavities against a cesium clock (Tjoelker et al. 1996).

Recent cold atom fountains aim at pushing this limit, by a factor of 400, below 10-16 per

year (Santarelli et al. 1999).

To date, the most stable clocks, with the best medium term performance, are the laser

cooled atomic fountain clocks. An Allan deviation of 4 × τ/10 14−  (� is the averaging

time) was recorded at Laboratoire Primaire du Temps et des Fréquences (LPTF) in their

cesium fountain (Santarelli et al. 1995). The short-term frequency stability of the local

oscillator, used to interrogate the atomic resonance, can impinge on the passive atomic

standards’ frequency stability (Audion et al. 1991; Dick et al. 1990; Szekely et al.

1993). This was overcome in 1998, when stability close to the stability limit, imposed

by the signal-to-noise ratio for detection of the atoms, was achieved in the above

measurement by replacing the quartz local oscillator with the University of Western

Australia’s (UWA) liquid helium sapphire clock (Santarelli et al. 1999). This meant a

fractional frequency stability better than 10-15 was obtained for integration times greater

than one hour. This sort of stability is capable of directly testing the theory of General

Relativity in the laboratory to a 10% accuracy level (Vessot 1980).

The Atomic Clock Ensemble in Space (ACES) project, soon to be launched by the

European Space Agency (ESA), will place a “space clock” aboard the International

Space Station. This will be the cold atom clock “PHARAO”, which will require a
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‘flywheel’ oscillator of 10-14 stability. In January 1998, the Frequency Standards and

Metrology (FSM) research group at UWA was informed that the ESA would encourage

and invite Australian participation in its development. The work in this thesis has been

directed toward the goal of developing a suitable ‘flywheel’ oscillator operating in the

temperature range 40 - 50 K, the temperature of operation in space, which avoids the

use of liquid helium. This most promising technology is based on a composite

sapphire/rutile resonator developed in a collaboration between the FSM group and the

Institut de Recherche en Communications Optiques et Microondes (IRCOM),

University of Limoges in France.

This thesis is divided into two parts: The first part deals with the design, construction

and proving of the frequency-temperature compensated resonator. Chapter 1 introduces

where and by whom different compensation techniques have been employed worldwide.

It has been published in (Hartnett and Tobar 2000). Chapter 2 develops an

understanding of the whispering gallery modes in dielectric resonators and solves

Maxwell’s equations in an open dielectric. The Mathematica notebook developed here

is currently used in a third year UWA Physics experiment (see Appendix A.1).  Chapter

3 investigates the inclusion of titanium ions into sapphire. I did all the experimental and

theoretical analysis. The predicted frequencies and filling-factors for the titanium doped

resonators were calculated by Dr. J. Krupka of the Institut Mikroelektroniki i

Optoelektroniki PW, University of Warsaw, Poland. Large portions of this work have

already been published in (Hartnett et al. 1999; Hartnett et al. 1998b). Chapter 4

investigates dielectric compensation techniques. The Finite Element modelling of the

rutile-sapphire resonators was completed by Dr M. Tobar, my co-supervisor, while

visiting at IRCOM, while at the department of Physics, UWA, I did most of the

experimental work. The early experimental work on the first stage design of this

resonator was jointly done by Dr. Tobar and myself. I did all of the experimental work

and analysis on the quartz resonator and experimented with a strontium titanate disk and

films on sapphire.  Most of this chapter has been published in (Hartnett et al. 2000c;

Krupka et al. 1999b; Tobar et al. 1999b; Tobar et al. 2000c; Tobar et al. 1998a).

The second part of the thesis involves the development and implementation of new

frequency discriminator electronic noise reduction (Chapters 5 and 6) and temperature

fluctuation reduction schemes (Chapter 7). Chapter 5 introduces oscillator noise

measurement and new discriminator designs to create superior low noise, high stability
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microwave oscillators, involving cryogenic interferometric and frequency modulated

oscillators. One low noise configuration, which was found worthy of a new patent

involved the elimination of the noise contribution of the ferrite circulator. A provisional

patent has been applied for and is reproduced in Appendix A.2. This work involved an

industrial collaboration with Poseidon Scientific Instruments Pty Ltd. This chapter has

been accepted for publication in (Hartnett et al. 2000b).

Nature is Her wisdom has always been conservative. She tells us “you can’t get

something for nothing” and since I was searching for a resonator with a zero frequency-

temperature coefficient, necessarily something had to be given back. This turned out to

be a reduced Q-factor and it presented another difficulty to operating a liquid nitrogen

oscillator at the target stability. As a result, I explored new Pound (frequency

modulation) stabilization and improved line-splitting techniques in Chapter 6, to enable

tighter locking to the resonator and help compensate for the reduction in Q-factor. Most

of this has already been published in (Hartnett et al. 2000a; Ivanov et al. 2000). In

Chapter 7, investigated the implementation a temperature-control servo around 50 K as

well as the benefits arising from a solid nitrogen bath. Finally, Chapter 8 concludes the

thesis.
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K kelvin

k Boltzmann’s constant

N impurity ion concentration

g Landé factor

µB Bohr magneton

kTh thermal conductivity

tTh thermal time constant

cP specific heat

T0 ambient temperature

Tdet effective noise temperature of

detector

TRS effective noise temperature of

readout

Tamp effective noise temperature of

amplifier

Tmix effective noise temperature of

mixer

RF
ampK gain of RF amplifier

w
ampK µ gain of microwave amplifier

Pres power incident on a resonator

Pinc power incident on

ac alternating current

dc direct current

κ microwave mixer conversion

ratio

η RF mixer conversion ratio

γ detector conversion ratio

α attenuation

αP attention through power divider

ϕ phase

β resonator coupling, axial

dielectric propagation constant

*
iβ effective resonator coupling on

port i

Γ̂ complex reflection coefficient

αm amplitude modulation (AM)

index

δαm fluctuations in AM index

ϕm phase modulation (PM) index

δϕm fluctuations in PM index

δϕref reference phase shifter error

χ magnetic susceptibility

χ’ real part of magnetic

susceptibility

χ” imaginary part of magnetic

susceptibility

ε0 permittivity of free space

µ0 permeability of free space

εi dielectric permittivity in

the ith direction

µi dielectric permeability in

the ith direction

d diameter of resonator

L length of resonator

τ integration time, relaxation time

λ wavelength
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ν frequency

f frequency

f0 fixed frequency

fosc oscillator frequency

fres resonator frequency

5.0f∆ half the unloaded bandwidth

)(
5.0
Lf∆ half the loaded bandwidth

ki wave number in ith direction

k0 free space wave number or

propagation constant

ω0 fixed angular frequency

ωosc angular frequency of oscillator

ωres angular frequency of resonator

5.0ω∆ half unloaded bandwith/2π

)(
5.0
Lω∆ half loaded bandwith/2π

ξ frequency detuning

ζ fractional curvature at 0=
∂
∂
T

f

θ(T) dimensionless sensitivity 
T

R

R

T

∂
∂0

ρx inductance

σ Allan deviation or square root of

the Allan Variance

σy Allan deviation of fractional

frequency fluctuations

σT Allan deviation of fractional

temperature fluctuations

σu Allan deviation of fractional

voltage fluctuations

E electric field, source voltage

H magnetic field

Htan tangential magnetic field

N non- (or anti-) symmetric mode

S symmetric mode

TM transverse magnetic

TE transverse electric

m azimuthal mode number

n radial mode number

p axial mode number

δ a number slightly less than unity

TTP frequency turning point

temperature

ppm parts per million

LNA low noise amplifier

LO local oscillator

LSF  line splitting factor

SLC sapphire loaded cavity

DVM digital volt meter

VCP voltage controlled phase shifter

HTS high temperature

superconductor

PZT piezoelectric

ESR electron spin resonance

δuTh voltage fluctuations in

thermistor

PRT platinum resistance thermometer

WG whispering gallery

WGE whispering gallery electric

WGH whispering gallery magnetic

WGRH whispering gallery radial

magnetic

Q quality factor

Q0 unloaded quality factor

Qmag quality factor due to

paramagnetic ions

Qdiel quality factor due to dielectric

RS surface resistance

GS geometric factor
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tanδi loss tangent in ith direction or

ith crystalline material

L(T) lattice contribution

C(T) Curie (magnetic) contribution

Cr3+ chromium 3+ ion

Ti3+ titanium 3+ ion

Ti4+ titanium 4+ ion

Mo3+ molybdenum 3+ ion

Al2O3 aluminium oxide (sapphire)

TiO2 titanium dioxide (rutile)

GaAs gallium arsenide

LaAlO3 lanthanum aluminate

TIP temperature independent

paramagnetic

Vc carrier amplitude

Vin incident signal amplitude

Vm modulation signal amplitude

Ω modulation frequency, Ohms

ubias bias voltage point

udet output detector voltage

umix output mixer voltage

J0 Bessel function of order 0

J1 Bessel function of order 1

Tint interferometer transfer function

th
nEδ energy of phase noise due to the

read-out effective noise temp.

osc
nEδ energy of phase noise due to the

oscillator phase fluctuations

circ
nEδ energy of phase noise due to the

circulator phase fluctuations

oscSϕ oscillator phase noise spectral

density

circSϕ circulator phase noise spectral

density

fn
RSS /

ϕ phase noise floor due to read-out

effective noise temperature

fn
CRLS /

ϕ phase noise floor due to

circulator phase noise

FD frequency discriminator

CI conventional interferometric

BD bi-directional

DR dual reflection

SD single directional

CS carrier suppression

FDS FD sensitivity

� offset or Fourier frequency

δΨ intereferometer phase mismatch

∆l interferometer length mismatch

|| parallel

⊥ perpendicular

i
pε electric filling factor

i
pµ magnetic filling factor

pd radial energy filling factor

pL axial energy filling factor

TCP temperature coefficient

permittivity

*
iεα temperature coefficient of

permittivity

*
iµα temperature coefficient of

permeability

*
dα radial expansion coefficient

*
Lα axial expansion coefficient



x

��������

Abstract ii

Preface iv

Glossary of symbols and abbreviations vii

Contents x

Acknowledgements xiv

Part 1 Frequency-Temperature Compensation of Microwave 17

Resonators for High Stability Oscillators

Chapter 1 Introduction to Compensation Techniques 18

1.1 Compensation Techniques 21

1.2 Paramagnetic Compensation 24

1.3 Dielectric Compensation 26

1.4 Mechanical Compensation 28

1.5 Current Research Worldwide 29

1.5.1 UWA Liquid Helium Sapphire Clock 29

1.5.2 JPL Maser-Sapphire Oscillator (SCM) 31

1.5.3 JPL Mechanically Compensated Sapphire Oscillator 32

1.5.4 LPMO Mechanically Compensated Sapphire Oscillator 34

1.5.5 JPL Sapphire-Ruby Closed Cycle System 34

1.5.6 NPL Liquid Helium Experiments 35

1.5.7 NPL-IFF Sapphire-Rutile Experiment 36

1.5.8 IFF Sapphire-Quartz/Lanthanum Aluminate-Rutile Experiments 37

1.6 Summary 38

Chapter 2 Dielectric Resonators 40

2.1 Separation of Variables Method 41

2.1.1 Maxwell’s Equations with Anisotropic Permittivity 41

2.1.2 Boundary Conditions 43

2.1.3 Components Matched in Radial Direction 45

2.1.4 Components Matched in Axial Direction 46



xi

2.2 Nomenclature 49

2.3 Experimental Verification 51

2.3.1 Sapphire 51

2.3.2 Rutile 54

2.4 Filling Factors 55

2.4.1 Electric Energy Filling Factors 55

2.4.2 Dimensional Energy Filling Factors 57

Chapter 3 Paramagnetic Compensation 59

3.1 Resonators 59

3.2 Frequency-Temperature Compensation 63

3.2.1 Experimental Results 63

3.2.2 Thermal Expansion and Dielectric Temperature Dependence 68

3.2.3 Van Vleck Paramagnetism 74

3.2.4 TiO2 Dielectric Compensation 82

3.2.5 Mode Curvature and Oscillator Frequency Stability 83

3.3 Quality Factors 84

3.3.1 Experimental Results 84

3.3.2 Relaxation Processes 86

3.4 Future Work 95

Chapter 4 Dielectric Compensation 97

4.1 Strontium Titanate-Sapphire Resonator 97

4.1.1 Introduction 97

4.1.2 Single Thin Disk 98

4.1.3 Thin Films 98

4.2 Quartz Resonator 99

4.2.1 Introduction 99

4.2.2 Experimental Results 100

4.2.3 Thermal Expansion Effects 101

4.2.4 Permittivity Effects 102

4.2.5 Q-factors 106

4.3 Rutile-Sapphire Composite Resonators 108

4.3.1 Sapphire-Rutile Disk Structure 108

4.3.2 Finite Element Analysis of Disk Structure 112



xii

4.3.3 Sapphire-Rutile Ring Structure 115

4.3.4 Design of a 12 GHz Resonator 116

4.3.5 Temperature Characteristics of H-modes 120

4.3.6 Temperature Characteristics of E-modes 121

4.3.7 Experiments on Ring Structure 121

4.3.8 Performance of the H8,1,δ Mode Resonator 123

4.3.9 Compensation via a Rutile WG Mode Interaction 130

4.3.10 Fundamental E and H-Mode Families 135

4.4 Future Work 137

Part 2 Noise Sources and Stabilisation of Secondary Frequency Standards 138

Chapter 5 New Interferometric Frequency Discriminators 139

5.1 Introduction 139

5.1.1 Phase Noise 140

5.1.2 Allan Variance 141

5.1.3 Frequency Discriminator Sensitivity 143

5.2 Single Directional Interferometric FD 148

5.3 Bi-directional Interferometric FD 150

5.3.1 First Configuration 151

5.3.2 Second Configuration 152

5.3.3 Dual Reflection Interferometric FD 153

5.4 Experimental Results and Discussion 153

5.5 Phase Noise Floors 157

5.6 Conclusion 161

Chapter 6 New Techniques in Pound Frequency Stabilisation 163

6.1 Allan Variance 163

6.1.1 Frequency Discriminator Sensitivity 163

6.1.2 Insertion Loss in Phase Shifters 166

6.1.3 Measurement System Noise Floor 168

6.2.4 Experimental Results and Discussion 169

6.2 Index of Spurious AM Fluctuations 173

6.3 Cryogenic Interferometer 176

6.4 Cryogenic Amplifiers 178



xiii

6.4.1 Introduction 178

6.4.2 Experimental Method 180

6.4.3 Results and Discussion 181

6.5 Conclusion 183

Chapter 7 Temperature Stabilisation of SLC Resonators 184

7.1  Temperature Fluctuations in a 283 K Oscillator 184

7.1.1 Voltage Divider Read-out 184

7.1.2 Temperature Fluctuations 186

7.1.3 Frequency Fluctuations 188

7.2  Temperature Fluctuations in a 55 K – 77 K Oscillator 189

7.2.1 Thermometers 189

7.2.2 AC Bridge Read-out 190

7.2.3 Temperature Fluctuations of Liquid and Solid Nitrogen Bath 192

7.2.4 Thermal Time Constants 193

7.2.5 Loop Oscillator 195

7.2.6 Temperature Fluctuations in Resonator 197

Chapter 8 Conclusion  201

Bibliography 204

Appendix 211



xiv

����� ����������

It was the summer of 1997. I had brought my family over to Perth from Sydney to visit

my parents and my wife’s sisters, whom we hadn’t seen for 15 years. We had driven

over 6000 km and arrive in the middle of a heat wave. But since we were in the West

again, I decided to visit the physics department where I had done my undergraduate

degree and honours in crystallography with Ted Maslen, some 23 years earlier. On my

arrival, I was pleased to discover that not only was he still here but also he was head of

the department. I mentioned my intention of doing a PhD at Macquarie university in

Sydney (in fact, I was about to enroll) and he suggested I look around in the department

and may be do it here. He said he could guarantee me the place as he was not only head

of Physics but also chairman of the Postgraduate Research committee. In Sydney a

month later, where I’d returned to pack up our house, leaving my wife and kids in Perth,

I received a phone call from an old friend in Perth telling me that Ted had just up and

died on me! A sudden heart attack, while running in the 40° heat! What a shock!

Our furniture was already half way to Perth on the back of a truck. I was committed, but

I was less certain of that place though. Cyril Edwards took over from him and though he

initially had his reservations about me coming back to physics after so many years (who

wouldn’t), thankfully Cyril saw the light, kept his head and I was allowed to enroll. I

would like to especially thank Ted who encouraged me to do this research at UWA and

Cyril who had the faith.

Well, that’s the story of how it started. Really, I must thank my dear wife, Christina, for

her love and all she endured taking care of me and 8 of our children, and a grand-child

some of the time, with less help from me than she used to get, as I spent many nights

and weekends studying.

Mike Tobar, my supervisor, I owe much, especially for all the encouragement and the

belief that I would succeed. Despite the fact that he was overseas half the time, he was

instrumental in helping me get as far as I have. Mike is continually getting good ideas

and provided good direction throughout the PhD. Eugene Ivanov, also my supervisor,

was always willing and available, providing good advice. Eugene’s mathematical mind



xv

has helped me with a better understanding of the theory in this thesis. He greatly helped

me improve my knowledge on oscillators, though I have learnt less than what he’s

forgotten, to paraphrase a friend.

Frank van Kann, my supervisor: gave good suggestions on implementing experimental

techniques and data collection methods. He has been very helpful in many a discussion

shared in the coffee shop at the Library. In fact, those coffee shop discussions were a

central core of scientific exchange and featured Mike, Frank, Andre, Fetah, Richard and

Tony. A special thank-you goes to André Luiten for all the guidance, help and

suggestions, particularly on the titanium doped sapphire stuff in the early stages of my

work. Andre’s sharp mind and superior intellect certainly has been a significant benefit

to my progress and understanding of the ‘politics’ that doesn’t occur in the department.

Also Tony Mann helped with many useful suggestions and information. Having worked

on the “clock” project for many years, Tony was a wealth of info. Richard Woode,

helped greatly in the first year and a half. He was very precise in his ideas of

constructing equipment for the experiments. Prof. Jerzy Krupka, gave a lot of help in

calculating mode frequencies and filling factors, as well gave a very interesting short

lecture course. Jesse Searls and Cameron McNeilage, from Poseidon Scientific Pty Ltd,

our collaborating partner on SPIRT grant projects, helped through technical advice and

assistance with the construction of sapphire loaded cavities and some equipment, and

often times at short notice. Prof. Michael Buckingham and I had some very useful

discussions, particularly on the spins of titanium doped sapphire. Paul Abbott, for

sharing his abundant Mathematica wealth with me and always being available to give

suggestions and help solve problems. Cyril Edwards as head of department understood

the complexities of some issues that came up and always stood with us and encouraged

the formation of the new FSM group. Ian McArthur for being a “good guy” head of

department after Cyril retired.

A special mention must go to Warren Croscup, in the store who put up with me

pestering him for so many years. And John Devlin, Gary Light, Derek Newman, John

Moore, Alan Gorham, Lance Maschmedt, Michael Cull, Phil Horton, and all the
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to persevere when I felt like quitting and the healing from many a headache I endured

these past three and a half years. It all seems like a miracle to me now…how it all came

about …. the scholarship that was just waiting for someone to walk off the street and

take it…and that person was me; the project in itself was very interesting; the resonators

had already been ordered, so by the time I knew what I was doing they were here and I

was collecting data.
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In recent years, a number of dielectric materials have been investigated for suitable

resonators in microwave oscillators, ranging from ceramics to pure crystals. Pure single

crystal sapphire has been found to have the highest quality factor in or around 10 GHz

in Whispering Gallery (WG) modes. Electromagnetic WG modes were named because

of their similarity with the acoustic modes observed by Lord Rayleigh (Rayleigh 1910)

in St. Paul’s cathedral.

d

L
ε
µ

c-axis

dielectric resonator

Top viewSide view

electromagnetic energy

Figure 1.1: A whispering gallery mode resonator with diameter (d), height (L), relative permittivity (ε),
and relative permeability (µ).

To make use of sapphire’s low loss tangent, high confinement is necessary, and can

only be achieved if higher order WG modes are excited (Blair and Evans 1982; Bunkov

et al. 1987; Kalinichev and Vadov 1988; Krupka et al. 1999a; Tobar and Mann 1991;

Vzyatyshev et al. 1985). When the crystal axis is cut aligned to the cylinder axis it

allows the radiation and conductor losses in these modes of resonance to be kept to a

minimum, as most of the electromagnetic energy resides inside the dielectric but close

to the dielectric/vacuum interface (see fig. 1.1). This special class of modes, which are
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totally internally reflected, has this confinement because only evanescent solutions can

exist outside the resonator. A ray-optic representation (see fig. 1.2) gives an

approximate view of these modes. A schematic view of a 6-reflection mode is drawn

showing the energy flow totally internally reflected in the median plane of a cylindrical

resonator. Most of the energy is confined between two cylinders: the dielectric/vacuum

surface and an inner circle called the caustic, which is tangent to the ray.

µ
d

ε

Figure 1.2: Electromagnetic Whispering Gallery (WG) modes complete total internal reflection at the
dielectric/vacuum interface. The broken inner circle represents a caustic, an inner imaginary cylinder
wall containing the electromagnetic energy flow.  For resonance to exist an integral number of
wavelengths must fit into the effective electrical path length,π� εµ .

In perfectly cylindrical resonators with isotropic permittivity there would be two

degenerate orthogonal stationary modes, each formed from two counter-propagating

modes, which perfectly spatially overlap. However, because of the anisotropic

permittivity of sapphire (and other mono-crystals), a misalignment between the crystal

and cylinder axes (usually ~ 1°) and imperfections (including crystal lattice

dislocations) in the manufacture of the crystal, there is generally a frequency splitting

observed between these two modes. The splitting is observed as a doublet of the order

of 2 – 20 kHz in a mode frequency around 10 GHz.

In general all modes are hybrid, but usually have a dominant electromagnetic field

component. Sapphire has a uniaxial anisotropic permittivity tensor, therefore, a mode

with a dominant axial electric field dependence is denoted as an E-mode. This means

the dominant magnetic field dependence is in the radial direction and is denoted as a

quasi-TM (transverse magnetic) or WGH-mode. Conversely, a mode with a dominant

axial magnetic field dependence is denoted as a H-mode, quasi-TE (transverse electric)

or WGE mode. The electric and magnetic filling factors (a number between 0 and 1) are

a measure of the respective field energy either perpendicular or parallel to the crystal

axis. It is common to designate modes in a dielectric resonator as Em,n,p+δ (quasi-
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TMm,n,p+δ) or Hm,n,p+δ (quasi-TEm,n,p+δ). Here m, n and p are the number of azimuthal,

radial and axial variations (or maxima) and δ is a number slightly less than 1. Normally

‘mode families’ are grouped with the same number of axial (p) and radial (n) field

variations but with different azimuthal field variations (m). For example, the

fundamental E-mode family is designated as Em,1,δ. In sapphire, as the azimuthal mode

number increases the modes become more WG like and the electric filling factors,

perpendicular and parallel, tend towards zero and unity, respectively. That is, they are

essentially either TM or TE like. The WGE (or WGH) mode nomenclature counts the

nodes along the radial and axial surfaces, for example, Em,1,δ is written as WGHm,0,0  or

Hm,1,δ is written as WGEm,0,0. In this thesis, generally, we’ll use the E or H-mode

nomenclature in describing high order WG like modes.

To construct low noise and high stability oscillators, the high Q-factor of the modes

discussed above is essential. However, the temperature dependence is another important

parameter that must be considered. No temperature control system is perfect, so

inevitably temperature fluctuations will cause the resonator frequency to shift. This part

of the thesis (chapters 1 – 4) is specifically focussed on discussing methods of

temperature compensation that annul the frequency-temperature dependence at specific

control temperatures. (Panov and Stankov 1986) were the first to implement a

mechanical compensation technique where two pieces of sapphire were held apart by a

temperature sensitive tuning element. Later (Abramov et al. 1988) further developed

this method at room temperature with two closely spaced unshielded sapphire disks

separated by a copper spacer. They were able to reduce but not quite cancel the

frequency-temperature dependence in an high order E-mode at 8.1 GHz.

(Dick et al. 1994) employed a similar mechanical compensation technique, at

temperatures above 77 K. However, they were successful in utilizing a copper spacer to

cancel the resonator temperature dependence. Another temperature compensation

technique utilizes composite dielectric structures consisting of more than one low loss

monocrystal. Two very thin slices of monocrystalline rutile were clamped tightly

against the ends of a cylinder of sapphire monocrystal (Tobar et al. 1997a; Tobar et al.

1998a). The temperature coefficient of permittivity (TCP) of sapphire and rutile are of

opposite sign and thus the temperature coefficient of the composite resonator may be

cancelled. This was achieved in various modes; E-modes (around 50 K) and H-modes
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(around 150 K). Other similar techniques utilized an ultra thin slice of rutile (Hao et al.

1998) or a central rutile puck (Ghosh et al. 1997) in conjunction with a crystal

resonator. Frequency-temperature compensation was achieved but the Q-values were

much lower than in sapphire alone at liquid nitrogen temperatures. Potential problems

that may exist with these techniques include sensitivity to seismic fluctuations and

thermal impedance introduced by the necessity of the composite structure.

At liquid helium temperatures, frequency-temperature compensation of monolithic

sapphire resonators has been achieved by the residual paramagnetic impurities of the

order of a few parts per million (ppm). Temperature compensation was observed in the

range 5 to 13 K with Cr3+ and Ti3+ ions (Jones et al. 1988; Luiten et al. 1996b; Luiten et

al. 1995; Mann et al. 1992).  The work of this thesis led to investigating intentionally

doped sapphire with a larger concentration of Ti3+ ions to raise the temperature of

compensation (Hartnett et al. 1998a; Hartnett et al. 1999; Hartnett et al. 1998b).

Compensation was achieved in E-modes (at 9 K), in H-modes (at 76 K) and in all

hybrid modes between. However, the Q-factor was strongly degraded, particularly for

modes with compensation temperatures above 50 K. Another technique was developed

at JPL, with a compensation point of about 10 K (in an E-mode), achieved in a

composite ruby-sapphire structure (Dick and Wang 1997; Dick et al. 1998). The ruby

and sapphire elements were separated by a few millimeters.

1.1 Compensation Techniques

The physical dimension of sapphire (d), as shown in fig. 1.2, contracts on cooling and is

accompanied by a permittivity (ε) decrease (Shelby and Fontanella 1980). Thus, the

electrical path length within the resonator is altered due to both effects, changing the

wavelengths and hence the resonance frequency of the normal modes. This dependence

is given by;

)(

1
)(

Td
Tf ∝                                                   (1.1a)

)(

1
)(

T
Tf

ε
∝                                                  (1.1b)

where f is the frequency of the electromagnetic resonance, a function of temperature (T).
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If a dielectric resonator contains paramagnetic ions, on cooling below liquid nitrogen

temperatures, the paramagnetic susceptibility (χ) of the lattice usually increases, and is

related to mode frequency by;

)(1

1

)(

1
)(

TT
Tf

χµ +
=∝                                        (1.2)

As the permeability (µ) increases, the electrical path length increases, and the resonance

frequencies decrease. Combining (1.1) and (1.2), the modal frequency-temperature

dependence can be written;

)()()(

1
)(

TTTd
Tf

µε
∝                                         (1.3)

Differentiating (1.3) and dividing by f yields
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The TCP (or ∂ε/∂T) of a sapphire resonator can be regarded as cancelled when ∂f/∂T

vanishes. It is important to note that a fractional variation in permittivity or permeability

leads to only half the fractional frequency shift and that (1.4) can be written as an

equality by introducing energy filling factors for each term. Normally these are

calculated numerically after the resonant mode has been identified and generalized to

include anisotropic components perpendicular and parallel to the cylinder axis.

The full generalised anisotropic form is
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    (1.5)

where L is the axial length of the cylinder and d is the diameter. Equations (1.4) and

(1.5) may be rewritten as;
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where the following may be defined as (Kajfez and Guillon 1986):

the electric filling factor normal to the crystal axis:
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,2 //

//

//
// energyfieldelectricstoredtotal

instoredenergyfieldelectricalf

f
p

ε
ε

ε
ε =

∂
∂−=

the magnetic filling factor normal to the crystal axis

,2
energyfieldmagneticstoredtotal

instoredenergyfieldmagneticf

f
p ⊥

⊥

⊥
⊥

=
∂
∂−= µ
µ

µ
µ

the magnetic filling factor parallel to the crystal axis

,2 //

//

//
// energyfieldmagneticstoredtotal

instoredenergyfieldmagneticf

f
p

µ
µ

µ
µ =

∂
∂−=

the radial energy filling factor

,
energyneticelectromagstoredtotal

patternfieldradialtheinstoredenergyneticelectromag

d

f

f

d
pd =

∂
∂−=

the axial energy filling factor

,
energyneticelectromagstoredtotal

patternfieldaxialtheinstoredenergyneticelectromag

L

f

f

L
pL =

∂
∂−=

the temperature coefficient of permittivity perpendicular to the crystal axis

,
1*

T∂
∂

= ⊥

⊥
⊥

ε
ε

αε

the temperature coefficient of permittivity parallel to the crystal axis

,
1 //

//

*

// T∂
∂

=
ε

ε
αε

the temperature coefficient of permeability perpendicular to the crystal axis

,
1*

T∂
∂

= ⊥

⊥
⊥

µ
µ

α µ

the temperature coefficient of permeability parallel to the crystal axis



PART 1: TEMPERATURE COMPENSATED RESONATORS

24

,
1 //

//

*

// T∂
∂

=
µ

µ
α µ

the radial expansion coefficient
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It should be noted here that compensating the TCP of a sapphire resonator requires the

addition of another mechanism. This could be either the addition of paramagnetic

impurities with opposite temperature coefficient of permeability, a material with

opposite expansion coefficient, or a material with opposite temperature coefficient of

permittivity. Thus, (1.6) must usually be considered by summing the effect of all

materials present.

1.2 Paramagnetic Compensation

It is apparent from (1.4) and (1.5) if ∂µ/∂T is of opposite sign to the TCP (or ∂ε/∂T) then

∂f/∂T may go to zero at some temperature depending on the relative energy filling

factors. This has been achieved with residual paramagnetic ions at temperatures below

80 K (Jones et al. 1988) (Hartnett et al. 1999; Luiten et al. 1996b). Fig 1.3 plots, as a

function of temperature, the magnetic susceptibility and dielectric permittivity of

sapphire doped with 40 ppm paramagnetic ions.

Many ions with unpaired electrons are paramagnetic with non-zero angular momentum

and a corresponding magnetic moment. Their spins will tend to align parallel or anti-

parallel to the applied magnetic field, with their magnetic dipoles precessing about the

direction of the magnetic field. A magnetically dilute concentration of paramagnetic

ions acts independently. On cooling, thermally excited states become less likely

according to Boltzmann’s statistics. Alignment occurs to minimise the orientation

energy of the spins and because of this, the magnetic susceptibility increases.
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Figure 1.3: Real part of the paramagnetic susceptibility (χ’ = µ -1) and permittivity (ε) in Ti3+ doped
sapphire where ∂µ/∂T is of opposite sign to ∂ε/∂T. Experimentally determined values are shown for the
susceptibility (curve 1 is χ’|| and curve 3 is χ’⊥) and permittivity (curve 2 is ε|| and curve 4 is ε⊥) of
sapphire with approximately 40 ppm Ti3+ paramagnetic ions.

In a paramagnetic doped crystal the real part of the susceptibility (χ’) results from the

energy level differences in spin states. In Ti3+ doped sapphire the first energy level is

1134 GHz above the ground state (Byvik and Buoncristiani 1985) and usually cannot be

directly excited with a microwave field, therefore any ac susceptibility component can

be neglected leaving only a dc or static term. In contrast, in Cr3+ doped sapphire the first

energy level is 11.44 GHz above the ground state and can be saturated by a microwave

field.

Calculation of the temperature dependence of the susceptibility (χ’) can be simplified

when the doping ions can be treated as an ensemble of non-interacting (or dilute),

homogeneously distributed ions. In this case, the paramagnetic susceptibility for a

particular species is quite adequately described by the classical van Vleck equation

(Carlin and Duyneveldt 1977) (Vleck 1932), and for temperatures such that kT >> ZFS

(zero field splitting = energy difference of the first excited state and the ground state in

zero magnetic field) reduces to standard Curie law;

kT
JJNg B

3
)1(22

'1' +==− µχµ                                       (1.7)
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where k is Boltzmann’s constant, µ’ is the real part of the permeability, N is the

concentration of impurity ions, g is the Landé factor which describes the multiplicity of

the state, µB is the Bohr magneton and J is the equivalent total angular momentum of

the ground state ion. Equation (1.7) is true for Cr3+ in sapphire (ruby) (Carlin and

Duyneveldt 1977; Jones et al. 1988; Mann et al. 1992) but as this thesis will explain

does not work for Ti3+ ion in sapphire.

The imaginary part of the susceptibility (χ” = 1/Qmag) accounts for the losses in the

system due to the paramagnetic dopants (Braginsky et al. 1985). When the

compensation is strong the losses are also large. This can be understood in terms of the

relationship between the real and the imaginary parts of the susceptibility. That is, χ”(T)

∝ χ’(T) ∝ N. Therefore, both ∂µ/∂T and the paramagnetic Q-factor (Qmag ) are

dependent on the concentration of the doping ion.

1.3 Dielectric Compensation
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Figure 1.4: Permittivity of sapphire and rutile as a function of temperature. Both are uniaxial anisotropic
crystals. Experimentally determined parallel (curve1 [Rutile] and 2 [Sapphire]) and perpendicular
components (curve 3 [Rutile] and 4 [Sapphire]) are given (Krupka et al. 1997; Shelby and Fontanella
1980; Tobar et al. 1998b).

Sapphire-rutile composite WG resonators appear to be the best option when considering

dielectric compensation of sapphire above liquid helium temperatures (Tobar et al.

1998a). For these type of resonators a small piece of compensating dielectric (for
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example, rutile) is used to perturb the frequency of the sapphire resonator and annul the

frequency-temperature dependence. It will be referred to as the perturbation dielectric.

In sapphire, the permittivity term of (1.4) is approximately 15 times the dimensional

term (Braginsky et al. 1985; Luiten et al. 1996b; White 1993) and in rutile it about 65

times (Touloukian 1970) (Luiten et al. 1998; Tobar et al. 1998b; White 1996). If ∂L/∂T

and ∂d/∂T are neglected and ∂µ/∂T = 0 for paramagnetic impurity free material and the

mode is assumed to be either pure TE or TM, then by summing the two dielectric terms

from (1.5) ;
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                              (1.8)

where pS and pR are the electric energy filling factors in sapphire and rutile and it is

assumed pS + pR ≈ 1, which is a good approximation for WG modes. For sapphire, εS is

or the order 10 with positive ∂εS/∂T whereas for rutile, εR is of the order 100 with

negative ∂εR/∂T (fig. 1.4).
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Figure 1.5: Required ratio of filling factors of the electric field energy in the rutile (or perturbation
dielectric) and the sapphire resonator to create a turning point (TP). Curves for perfect E and H modes
have been calculated from (1.9) with data from fig. 1.3.

From (1.8) the TCP of sapphire is compensated when ∂f/∂T = 0, therefore
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where *αTP represents the effective TCP values for sapphire and rutile at the

compensation (turning point) temperature. These values include the small thermal

expansion effects that initially were neglected in (1.8). The ratio of these filling factors,

pR/pS, has been calculated for pure E and H-modes (see fig. 1.5) (Tobar et al. 1998a).

This ratio approximately represents the ratio of the physical volumes of the two

dielectric materials.  Only a small volume of rutile in needed for compensation, acting

as a perturbation on the sapphire modes. For turning points in the range, 50 to 80 K, the

volume ratio should be ≤ 10-2.

The Q-factor of high order WG modes in the composite resonator can be calculated

from
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where tanδS and tanδR are the respective loss tangents for sapphire and rutile. For the

case with a small perturbation dielectric, pR/pS << 1, (1.10) becomes

R
S
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S p

p

Q
δδ tantan

1 +≈                                            (1.11)

With pR/pS ~ 10-2, typical Q values for E and H-modes at 77 K can be calculated to be

approximately 8 × 106 and 107 respectively.

1.4 Mechanical Compensation

In (1.4), if ∂ε/∂T is of opposite sign to ∂d/∂T, ∂f/∂T may be vanish at a certain

temperature. This technique has been achieved by arranging two dissimilar materials

with differential thermal expansion to compensate the change in permittivity (ε). In one

case, two pieces of sapphire are separated by a copper rod (Abramov et al. 1988; Dick et
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al. 1994). This idea is similar to (Panov and Stankov 1986), (Tobar and Blair 1991) and

(Bilenko et al. 1996) where the gap between two sapphire cylinders modulate the

resonant frequency. Other forms of mechanical tuning have been applied, for example,

using a superconducting plate (Ghosh et al. 1997) above a sapphire resonator and servo

controlling its position with a piezoelectric transducer.

1.5 Current Research Worldwide

In this section, I discuss the current research worldwide. In some cases, temperature

compensated cavities were implemented in frequency stable oscillators. This has been

achieved over a range of temperatures. The main determinants of a resonator's

performance are the Q-factor, and the mode curvature at the operating temperature. In

the case of a compensated mode the operating temperature corresponds to the turning

point temperature. To compare the degree of electronic stabilization performance, I

define a line splitting factor (LSF) as the fraction of the bandwidth to which the

oscillator is locked:

bandwidthresonator

stabilitybestfrequencyresonance
LSF

×=

1.5.1 UWA Liquid Helium Sapphire Clock

The sapphire clock project started at UWA in 1988. A Sapphire Loaded

Superconducting Cavity (SLOSC) resonator (Giles et al. 1990; Jones et al. 1988) was

constructed based on a niobium cavity loaded with a 30 mm diameter, 30 mm high

cylindrically cut Union Carbide sapphire monocrystal. This exploited the high Q of the

H6,1,δ (9.73 GHz) mode in the sapphire cylinder as well as the very low losses in

superconducting niobium at liquid helium temperature. The resonance exhibited a

frequency-temperature turning point at 6 K due to a combination of the effect of the

surface reactance of superconducting niobium and the static susceptibility of about 1

ppm Cr3+ ions.  Mode curvature at the turning point was measured to be 3.7 × 10-9/K2. A

dependence of the SLOSC frequency on power is thought to be due to a combination of

the saturation of the Cr3+ resonance (spins occupying excited states) and differential

heating between the sapphire and the cavity walls.
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An oscillator was constructed using the resonator as both the frequency-determining

element as well as the dispersive element in a Pound discriminator. A fractional

frequency Allan deviation of better than 1 × 10-14 was achieved over 3 to 300 seconds

with a minimum of 9 × 10-15. This was with a loaded Q of 3 × 108 and a line splitting

factor equal to 3 × 10-6.

To realise a higher field confinement and have less dependence on the cavity walls, the

next version of the UWA sapphire clock utilised a 5 cm diameter resonator. Two

nominally identical (d = 50 mm, L = 20 to 30 mm tapered) HEMEX grade pure sapphire

resonators (Luiten 1995; Luiten et al. 1995) were mounted inside cylindrical niobium

cavities, placed in a vacuum can inside a cryostat and cooled to 6 K with liquid helium.

A temperature control of 10 µK was achieved with a carbon glass thermometer and a

heater in good thermal contact with the shield. A WG mode, H14,1,δ was excited at 11.9

GHz with a loaded Q of 109. At 6 K, in one of the resonators, ∂f/∂T was annulled with a

curvature of ~10-9/K2 while the second had no turning point but a minimum slope of 3 ×

10-10/K.  The mode frequency-temperature dependence of both resonators can be

explained in terms of a combination of a few ppm of residual paramagnetic Mo3+ and

Ti3+ ions.

The resonator was used as a feedback element in a loop oscillator, where the oscillator

frequency was locked to the center of resonance by an active Pound stabilisation

scheme, with a second servo removing the spurious AM modulation produced by the

phase modulator. Resonator temperature and microwave power were also servo

controlled to minimise the resonator frequency fluctuations. Two nominally identical

oscillators were constructed, mounted in separate cryostats and compared using a

double heterodyne configuration. The frequency dependence on dissipated microwave

power in both resonators was ~10-10/mW and consistent with a permittivity change due

to radiation pressure. The minimum Allan deviation of 8 × 10-16 was reached at 50

seconds, which represents a line splitting factor of 8 × 10-7. Between 0.3 and 30 seconds

the stability was about 2.5 × τ/10 15− , only limited by the measurement system and

servo system noise floors.

When the sapphire oscillator was configured as a flywheel to a cesium fountain clock

(Mann et al. 1998) the combination yielded a frequency stability of 5 × τ/10 14− . In
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order to use the sapphire oscillator with the fountain, the operating mode frequency had

to be changed to 9.19 GHz (in the H12,1,δ mode) to avoid the use of a synthesizer to

convert 11.9 GHz to the 9.192631770 GHz hyperfine transition frequency. This mode

had a temperature turning point at 6 K and similar curvature but its loaded Q was about

108 with a coupling of 0.3. Both of these effects caused a reduction in oscillator

stability, resulting in a minimum at 10 seconds of 3 × 10-14. This is a LSF of 3 × 10-6.

The latest results of the sapphire helium clock project (Chang et al. 2000) have

established that this technology as the best to date, for any frequency standard over the

integration times (τ) 1 < τ < 100 s.  By beating two oscillators, an Allan deviation of

about 5.4 × τ/10 16− was measured for integration times of 1 < τ < 4 s and a minimum

fractional frequency stability of 2.4 × 10-16 was reached at 32 s. These oscillators were

based on nominally identical sapphire dielectric resonators with unloaded Q-factors of

1.1 × 109 and 5.5 × 109 in the 11.9 GHz whispering gallery H14,1,δ  mode at 6 K.

1.5.2 JPL Maser-Sapphire Oscillator (SCM)

Researchers at the Jet Propulsion Laboratory (JPL) have implemented a ruby maser

(Strayer et al. 1987) operating in a coaxial resonator coupled to superconducting Pb film

coated sapphire resonator. The resonator was mounted in a superconducting vessel, all

maintained at about 1 K via a liquid helium bath. The coupling was via a 1½

wavelength coaxial resonator, which also gave sufficient isolation of the sapphire

resonator from the magnetic field of the ruby maser to prevent Q-factor degradation.

Following the work of (Braginsky and Panov 1979), they evaporated a thin lead film

onto a sapphire cylinder and measured a Q-factor of 2 × 109 in the TE0,1,1 mode at 1.5 K.

The maser provided gain with very low noise and small power dissipation, while the

sapphire resonator provided the frequency stability through the 100-fold smaller

coefficient of thermal expansion. Any change in the stabilizing cavity’s resonant

frequency resulted in a change in the oscillator frequency. Sapphire was chosen because

of its high Debye temperature and strength, hence reducing frequency shifts due to tilt,

temperature drift and vibration.
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Three coupled cavities formed a multiple resonant system, one mode of which provided

the stabilized operation and the other two modes were designed not to oscillate. The

ruby and the coupling resonators were excited in coaxial TEM modes whereas the

stabilizing resonator was excited in the TE0,1,1 mode. The sapphire’s Q-factor and the

(negative) value for that of the pumped ruby resonator describe the condition of power

balance which in turn determines a minimum fractional energy content in the ruby

resonator for oscillation. Most of the energy of the oscillations was dissipated in the

stabilizing sapphire resonator, which permitted high, short-term frequency stability.

Tuning was achieved by adjustment of the magnetic field bias to the ruby maser.

A beat measurement to measure the SCM’s frequency stability was performed against a

superconducting cavity stabilised oscillator (SCSO), a Gunn diode oscillator locked to a

resonator made from a hollow cylinder of Niobium. The SCSO’s performance was 3 ×

10-15 (Stein and Turneaure 1975) at the same integration times as the SCM. The SCM

yielded a stability of 8 × 10-15 at 256 s. The mode Q-factor was 108 and it’s operating

temperature about 1.0 K. This translates into a LSF of 8 × 10-7.

1.5.3 JPL Mechanically Compensated Sapphire Oscillator

Dick et al (Dick et al. 1994; Dick et al. 1995; Santiago et al. 1996; Santiago et al. 1995)

constructed a sapphire resonator (d = 50 mm, L = 23 mm) made with two similar

sapphire crystals. The two pieces were held apart by a copper post. The relative

difference in the thermal expansion of the sapphire and the copper post, at 87 K,

cancelled the temperature induced frequency shift of the sapphire’s resonant mode due

to the strong tuning effect of the gap spacing between the two crystals. Copper was

chosen because of its much greater expansion coefficient over that of sapphire. As the

resonator structure cooled, the relative difference between the two thermal expansion

coefficients caused the gap to decrease and the resonant frequency to increase.

Many WG modes were investigated and the Em,1,δ mode family was chosen as the most

useful because the E-field had maximum energy in the gap and strongly tuned the mode

frequency. Other modes were only weakly tuned, such as the Em,1,1+δ mode family

which had a minimum in its E-field energy in the gap, and the Hm,1,δ mode family where

the dominant E-field lies tangential to the surfaces in the gap (ie perpendicular to the
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crystal axis). Measured tuning rates indicated that the Em,1,δ family could be

compensated above 77 K for modes with an azimuthal number, m ≤ 8. The E8,1,δ (7.23

GHz) mode was chosen because it enabled the highest Q-factor of 1.8 × 106 and had a

high compensation temperature of 87 K.

A liquid nitrogen cooled oscillator was built based on the E8,1,δ mode. First, the

oscillator was arranged in open loop configuration with unregulated temperature

control. Measured against an H maser, the Allan deviation was 1.4 to 6 × 10-12 for

integration times 1 ≤ τ ≤ 100 s (Dick et al. 1994; Dick et al. 1995). In the following

year, a second thermal stage was added, which increased the thermal time constant

between the vacuum can and the liquid nitrogen bath to dampen the effects of bath

temperature fluctuations. The loop gain was increased by increasing the modulation

frequency in the Pound circuit to 2 MHz. These, with other improvements led to a

measured Allan deviation of 2.6 to 4 × 10-13 (Santiago et al. 1995). Finally by 1996

further improvements with the ac frequency-lock Pound circuit enabled an Allan

deviation of 7.5 × 10-14 between 3 and 10 s and ≤ 2 × 10-13 for all τ less than 100 s

(Santiago et al. 1996). This was achieved with a quality factor of 2 × 106 and a LSF of

1.5 × 10-7.

However, the CSO continued to exhibit a large frequency drift due to creep in the soft

solder used to join the sapphire pieces to the copper support post. This was measured to

be 1.5 × 10-8/day which can be corrected for but remains a drawback for long-term

operation. Additional concerns remained with the vibration sensitivity due to the

multiple element structure. In addition the compensation fails at short times because of

the mismatched thermal time constants of the two compensation mechanisms.

Contamination problems in the high-field gap region limited the Q-factor but with

improved Q values of 107 a stability of 1 to 2 × 10-14 was expected. When used as a

flywheel for the Linear Ion Trap Standard (LITS), the combined CSO/LITS showed a

stability of 2 × τ/10 13− compared to 6.4 × τ/10 14− for the LITS when measured

using a super quartz local oscillator of about 1 × 10-13 stability.
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1.5.4 LPMO Mechanically Compensated Sapphire Oscillator

The team at the Laboratoire de Physique et Métrologie des Oscillateurs (LPMO),

Besançon, France, also built a sapphire oscillator based on the same mechanical

compensation technique using two sapphire pieces held apart by a copper rod, except

they employed a novel temperature sensor (Kersale et al. 1999; Kersale et al. 1998;

Kersale et al. 2000). The sensor was based on a 28 GHz miniature quartz oscillator that

was attached directly to the resonator cavity. At 77 K, the temperature sensitivity was

about 925 Hz/K. The sensor was designed to operate at both 77 K and room

temperature. By combining its signal with a 25 GHz reference oscillator a temperature

resolution of 12 µK was possible. They implemented a loop oscillator based on a 9 GHz

E7,1,δ mode resonance with a turning point at 87.7 K.  The loaded Q-factor was about 2

× 106 and when a spurious mode suppression technique was employed by depositing

two metallic lines on the top surface of the resonator, a 300 MHz spurious mode free

zone was seen either side of the operational resonance. The best Allan deviation of

fractional frequency fluctuations was 1.6 × 10-12 obtained at 10 s of integration.

However, the oscillator suffered a long-term drift of 1 × 10-8 /day.

1.5.5 JPL Sapphire-Ruby Closed Cycle System

An oscillator (Dick and Wang 1997; Dick et al. 1998) based on a high-Q HEMEX

grade, cylindrically cut, single sapphire crystal coupled to a nearby ruby element was

recently built at JPL with temperature compensation at 10 K. The ruby element of

approximately the same dimensions was assembled with a gap of either 2 mm or 4 mm

above the sapphire. This resonator structure was placed in a small dewar and cooled to

10 K with a 2-stage Giffard-McMahon closed-cycle cryocooler. Cryocoolers generate

vibrations that would normally degrade the performance of any oscillator. However, to

reduce this problem novel vibration isolation techniques were implemented, along with

non-contact heat transfer via turbulent convection in a gravitationally stratified helium

gas (Boolchand et al. ).

A high azimuthal number WG mode resonance was chosen because of its high field

confinement to minimize the shield dimensions. The H14,1,δ mode was excited in the

sapphire and its frequency to temperature fluctuations were cancelled, to first order, by

the paramagnetic effect of the Cr3+ ions in the ruby (which is equivalent to a sapphire
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doped with a high concentration of Cr3+ ions, in this case, 300 ppm). Due to the close

proximity of the ruby element and its geometry, the evanescent H-field of the H14,1,δ

mode in the sapphire provided coupling to the spins of the chromium ions. A rotation of

the magnetic field orientation was apparent in the ruby, producing a small H-field

component perpendicular to the crystal axis. Chromium ions couple much more strongly

to this H-field component than the dominant parallel component. Finite element

calculations suggested the required size of the ruby element to give the desired magnetic

filling factor. This was approximately 0.0012 (ie 0.12 % of the H-field energy resides in

the ruby element). By varying the gap this energy content may be altered and the

frequency-temperature compensation point moved.

The resonant mode had a frequency of 10.395 GHz, 1 GHz below the 11.44 GHz zero

field splitting (ZFS) frequency of chromium. Its unloaded Q-factor in the assembled

resonator was 1 × 109 when critical coupled.  It had a compensation temperature of 8.54

K. The CSO incorporating this resonator exhibited an Allan deviation of ≤ 2.5 × 10-15

for integration times (τ) 200 ≤ τ ≤ 600 s when measured against an H maser. With the

CSO as a flywheel for the LITS trapped mercury ion frequency standard, the CSO/LITS

combination had a limiting performance of 3.0 × τ/10 14− , an improvement on the

mechanically compensated CSO performance.

1.5.6 NPL Liquid He Experiment

At the National Physical Laboratory (NPL), Teddington, UK a liquid helium clock

(Langham and Gallop 1996; Langham and Gallop 1997) was built based on a 140 mm

long sapphire rod resonator with a diameter of 20 mm. This included a novel microwave

choke arrangement, which confined the microwave fields to the central region of the

resonator and reduced conductor losses. It was enclosed in a superconducting lead

shield (inner diameter 48 mm) and cooled to 4.2 K in a liquid helium cryostat. The

structure was held in place by a spring-loaded piston arrangement. The shield was

machined out of a single piece of lead with a lead cap fitted to the top. Microwave

power was coupled in and out via probes through hermetically sealed SMA connectors

in the side-walls. Two vacuum jackets were employed and thin film resistive heaters

were attached to the resonator can. Thermometry was controlled through rhodium-iron

and carbon-glass thermometers.
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Two independent methods provided temperature control to maintain the resonator at 4.5

K. Firstly the bath temperature was controlled by a pump working at constant speed

with a heater immersed in the cryogenic fluid. By controlling the ‘excess’ boil off the

bath temperature was servo controlled to a stability of approximately 0.3 mK. The

second level of temperature control was provided through the thermometers attached to

the resonator can. Using a 2 kΩ carbon-glass thermometer in an ac bridge a 10 µK

resolution was achieved.

Temperature compensation in the range 4 to 5 K was achieved in 10.9 to 17.1 GHz

modes by approximately a 0.3 ppm concentration of paramagnetic (mainly Cr3+) ions.

These were high order longitudinal modes with axial mode number p < 10. For higher

axial mode numbers the losses increased due to leakage as the longitudinal node spacing

became comparable to the choke dimensions. The highest Q value was 6 × 107 at 17.1

GHz. A synthesized microwave source was stabilized by a 300 Hz frequency

modulation, detected by a lock-in amplifier; the error signal was fed back to a Marconi

2031 signal source at 20 MHz. The beat signal was down converted and counted by a

counter referenced to an H maser. This yielded Allan deviation values of 10-12 at 100 s

and 4 × 10-13 at 500 s and represents a LSF of 2.4 × 10-5.

1.5.7 NPL-IFF Sapphire-Rutile Experiment

The NPL group implemented an oscillator (Hao et al. 1998) based on a resonator built

with a 100 µm thick single crystal rutile disk (d = 17 mm) glued to one end of a single

crystal HEMEX sapphire puck of the same diameter. A WG mode was excited at 17.1

GHz with an azimuthal mode number of 7, a compensation temperature of 40.8 K and

an unloaded Q factor of 3 × 106. The composite resonator was mounted in an OHFC

copper housing, supported by quartz tubes, top and bottom and held together by springs.

The copper housing had a heater wound on its outer surface and silicon diode

thermometers attached top and bottom. It was then placed in a vacuum can immersed in

a liquid helium bath in a cryostat.

A loop oscillator was implemented based on a low-noise GaAs amplifier. The oscillator

frequency was stabilized using a Pound scheme with a modulation signal of 100 kHz.
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The frequency stability of the composite-puck resonator-oscillator was measured

against an H-maser and yielded a stability of 4 × 10-12 at 1000 s, falling from 4 × 10-11 at

100 s. The author believed that this indicated that the oscillator performance was limited

by white noise at the longest integration times. By suitable choices, of both the mode

and the volume ratio (of the sapphire and the rutile), the turning-point temperature may

be shifted within the range 30 to 90 K. A 60 K design is envisaged with two orders of

magnitude improvement in performance. This will be achieved by a reduction of the

vibration sensitivity of the composite structure.

1.5.8 IFF Sapphire-Quartz/Lanthanum Aluminate-Rutile Experiments

At the Intitut für Festkörperforschung (IFF), Germany, they have experimented with

two ideas (Ghosh et al. 1997). In one instance, they placed a small single crystal rutile

cylinder (d = 4.0 mm, variable height) into the central hole of a single crystal LaAlO3

ring (inner radius = 2.0 mm, outer radius = 7.6 mm, height = 7.6 mm) and excited the

TE0,1,1 resonance at 5.6 GHz. High temperature superconducting (HTS) material

(YBCO) was used for the end plates. The TE0,1,1 mode was chosen for frequencies

below 20 GHz to achieve the highest Q-factor, lowest mode density and the absence of

current flow between the superconducting end plates and the normal side walls.

Since the TCP (∂ε/∂T) for LaAlO3 at 77 K is of the order of 10-3/K and for rutile it is of

the order of 0.1/K and of negative sign, only a small amount of rutile was necessary to

cancel the TCP in the LaAlO3 ring at this temperature. The height of the rutile puck was

varied to select the optimum electromagnetic filling factor for the rutile as the

compensation point was determined by the ratio of volumes of the two dielectrics. With

a 2.5 mm height for the rutile a 68 K compensation point was achieved with 8 × 10-7/K2

curvature.

In the second case, they excited a WG mode, E7,1,δ, at 23 GHz in a sapphire cylinder (d

= 13 mm, L = 5.63 mm) supported by a quartz disk of the same diameter (L = 2.185

mm). This resonator was housed in an OHFC copper cavity of 22 mm diameter and 10

mm height and cooled to 77 K with a Stirling type cooler.  This design was chosen for

frequencies above 20 GHz because in that frequency range the Q-factor was limited
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mainly by dielectric losses and not the wall geometry. A loaded Q-factor of 4 × 105 was

measured at 77 K.

The top and bottom plates were made from HTS material and the top plate positioned

by a tuning screw with spacing to the dielectric in the range 0.9 mm to 0.45 mm. At 79

K the mechanical tuning range was 40 MHz but the Q factor was significantly degraded.

Temperature induced frequency drift was approximately –200 kHz/K at 77 K. Further

temperature instabilities of  ± 0.05 K from the input voltage of the compressor resulted

in ± 10 kHz fluctuations.  A PZT piezoelectric mechanism was implemented for precise

tuning and can compensate for these shifts. However the main problem to this design is

its microphonic nature.

1.6 Summary

Table 1.1 lists the main achievements in this area along with the measured fractional

frequency Allan deviation, where measured.

TABLE 1.1: ALLAN DEVIATION OF FRACTIONAL FREQUENCY SUMMARIZED FOR τ  ≤ 100 S.

YEAR METHOD TTP  [K] Best
Stability

LSF REFERENCE

1975 Niobium cavity 1.2 3 × 10-16 3 × 10-6 (Buchman et al. 1998)

1986 Gap 77 4 × 10-12 4 × 10-5 (Panov and Stankov 1986)

1987 Ruby maser 1 8 × 10-15 8 × 10-7 (Strayer et al. 1987)

1989 Cr3+ , Nb cavity 6 9 × 10-15 3 × 10-6 (Giles et al. 1990)

1991 Cr3+, Fe3+  ions 5 - 13 1 × 10-14 (Mann et al. 1992)

1994 Copper post 87 1.4 × 10-12 2.8 × 10-6 (Dick et al. 1994)

1995 Copper post 87 2.6 × 10-13 5.2 × 10-7 (Santiago et al. 1996)

1995 Mo3+, Ti3+ ions 6 8 × 10-16 8 × 10-7 (Luiten et al. 1995)

1996 Copper post 87 7.5 × 10-14 1.5 × 10-7 (Santiago et al. 1996)

1996 Cr3+ ions 4 - 5 1 × 10-12 2.4 × 10-5 (Langham and Gallop
1996)

1996 SrTiO3 disk 108 - 130 (Tobar et al. 1996)
1997 Rutile disk 50 - 150 (Tobar et al. 1999b)
1997 HTS plate 79 (Ghosh et al. 1997)
1997 TiO2 ; LaAlO3 68 (Ghosh et al. 1997)
1998 Copper post 87 1.6 × 10-12 3.2 × 10-6 (Kersale et al. 1998)

1998 Ruby disk 10 2.4 × 10-15 2.4 × 10-6 (Dick et al. 1998)

1998 Ti3+ ions 50 (Hartnett et al. 1999)
1998 Rutile disk 41 4 × 10-11 1.2 × 10-5 (Hao et al. 1998)

1999 Mo3+, Ti3+ ions 6 2.4  × 10-16 5 × 10-7 (Chang et al. 2000)

1999 Rutile rings 50 - 80 this thesis
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The niobium cavity-resonator oscillator of (Stein and Turneaure 1975) has been

included as a reference even though no compensation technique was used.

Unfortunately, temperatures in the range of 1 K were needed. One criticism of their

work has been that they compared three resonators all housed in the same cryogenic

environment and so the stability measured (in this instance 6 × 10-16 at about 100 s) was

not the result of a comparison of independent oscillators.

From an analysis of the data in Table 1.1, without a question, the liquid helium clock is

the best technology to date in terms of short term (τ < 100 s) Allan deviation of

fractional frequency stability. However, the drawback that many labs world-wide face is

the utility of an economical and easily accessible local oscillator with stability about an

order of magnitude better than the best quartz oscillator available. The research

presented here suggests using rutile rings compensating a high-purity sapphire-

monocrystal resonator would result in an Allan deviation of the order of 10-14 or less,

where the frequency discriminator noise floor is sufficiently low. Based on the

measured Q-factor 1.5 × 107 and Dick’s 87 K CSO (Santiago et al. 1996) line splitting

factor of 1.5 × 10-7, a stability of 1 × 10-14, due to the electronics is achievable. With a

temperature resolution of 100 µK within 1 mK of the turning point, it would be Q-factor

limited, and a stability ≤ 10-14 at short integration times becomes realizable.
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In this chapter, a solution to Maxwell’s equations in an open dielectric cylinder

resonator, as illustrated in fig. 2.1, is outlined. From this the resonance frequencies and

the energy filling factors may be calculated. This is primarily an extension of the work

done by (Tobar and Mann 1991), who built on (Garault and Guillon 1976). The latter

calculated the frequency of the lowest order mode in a cylindrical isotropic dielectric.

The former extended the idea to higher order modes in a uniaxial-anisotropic crystal.

Also this problem was solved in shielded uniaxial-anisotropic dielectric resonators by

(Kobayashi and Senju 1993), (Ivanov et al. 1993) and (Wang and Zaki 2000), the first

for low order modes and the latter two for high order WG modes. In this chapter a

straightforward and easily implemented separation of variables approach is presented.

Boundary conditions are imposed on a dielectric resonator neglecting the enclosing

cavity or shield. This leads to high accuracy in frequency prediction in high order

modes where the shield contribution is negligible.

Tobar derived four different equations, matching the tangential electromagnetic field

components at the dielectric/free-space interface, along the axis of the cylinder in the z-

direction. Each was valid for either a quasi-TE or quasi-TM mode with either odd or

even axial mode numbers. Tobar assumed that for sufficiently high order WG modes

(ie. m large) that they were either fully TE or TM like and had no component in the

orthogonal direction. Here, I make no such assumption. A single radial characteristic

equation was also derived, valid for all modes. This is then coupled with one of the axial

equations and solved for the frequency of the appropriate mode.
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2.1 Separation of Variables Method

2.1.1 Maxwell’s Equations with Anisotropic Permittivity

A schematic cross section of the modelled dielectric cylinder is shown in fig. 2.1.

Maxwell's equations are solved in regions 1, 2 and 3 with boundary conditions that the

strength of the tangential electric and magnetic field be continuous between these

regions. The four unlabelled regions are not considered. The support spindles shown in

fig. 1.1 are neglected also because of their dimensions and central location in a region

where there is little electromagnetic field.

z-axisregion 1

region 2

region 3

region 2

region 3

L

d

symmetry plane
spindle

r-directionφ

Figure 2.1: Cross sectional schematic of the regions of the crystal that are considered in solution of
Maxwell's equations. The spindles are not considered due to the fact that very little field exists there. The
parameter d is the diameter and L is the length or height of the cylinder. Cylindrical co-ordinates (r, �, z)
are shown, ��is the angle from r in the plane perpendicular to the page.

Maxwell's equations in a source free region may be expressed as:

HjE ˆˆ ωµ−=×∇                                                    (2.1a)

DjH ˆˆ
0εω=×∇                                                     (2.1b)

0ˆ =⋅∇ D                                                                (2.1c)

0ˆ =⋅∇ H                                                                (2.1d)
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φ  incorporates the permittivity tensor for an anisotropic

crystal. The parameters r, � and z are the cylindrical co-ordinate axes and εr, εφ, εz are
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the relative permittivity tensor components in those directions. And µ is the

permeability of the crystal. When sapphire is cut with the cylinder (z-)axis parallel to

the crystal axis, εr = εφ, making it uniaxial anisotropic. It can be shown that

022 =+∇ zrz HkH                                                   (2.2a)
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where wave numbers, µεεω 0rrk =  and µεεω 0zzk = . Both (2.2a) and (2.2b) are

standard wave equations with solutions involving oscillatory functions of the form jkze .

Notice that in an isotropic material (εr = εz), the second term in (2.2b) becomes zero and

the equation reduces to

022 =+∇ zzz EkE                                                    (2.2c)

Maxwell's equations may be separated into cylindrical co-ordinates, therefore (2.1a) can

be expressed as
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and similarly (2.1b) may be written as
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For a uniaxial anisotropic material, the permittivity components perpendicular and

parallel to the crystal axis are re-labelled, ε⊥, ε||, respectively. The parameter,

rr kkkk εφ 0=== , where the free space wave number µεω 00 =k . Now by
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comparing terms in (2.3), the following set of equations results valid in uniaxial

material of cylindrical symmetry:
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2.1.2 Boundary Conditions

I then matched the magnitudes of the tangential components along the surfaces along

the radial (r) and axial (z) directions as these components should not see the interface

and should be continuous across it. Therefore it is required that at the surface along the

radial direction:               
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The sub-indices represent the components in the different regions.

The solutions may be divided into two types:

S: Symmetric modes, for which the symmetry plane, the r-φ plane at z =

0 (broken line in fig 2.1) is a magnetic wall, and

N: Non- or anti-symmetric modes, for which the symmetry plane is an

electric wall.
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Making no assumptions about the divergence of E being independent of z (as was made

in (Tobar and Mann 1991)), a separation of variables on the z-component of the

electromagnetic field was applied. The expected functional forms in (2.5) and (2.6) are

solutions of (2.2a) and (2.2b) in the different regions inside and outside the dielectric. In

one case, the H-field amplitude components are chosen to be symmetric around z = 0, ie

maximum
0

==zzH (see fig 2.2). Therefore
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22 kkout −= β . Here kE and

kH are the radial dielectric propagation constants parallel and perpendicular to the

crystal axis, k0 the radial propagation constant outside the dielectric, � the axial

dielectric propagation constant, α the axial decay constant outside the dielectric and m

the azimuthal mode number. A to F are unknown amplitude constants. Jm and Km are

Bessel functions of order m.

In the other case, the H-field amplitude components are chosen to be anti-symmetric

around z = 0, ie 0.
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From the z-component, Maxwell’s equations can then be used to solve for all other

electromagnetic field components (Auda and Kajfez 1986).

2.1.3 Components Matched in Radial Direction

Firstly, I matched the tangential components of the E and H fields between regions 1

and 2. Using the last 2 radial direction boundary conditions and eliminating common

terms gives us two equations in two unknowns. Then applying (2.4b) and (2.4c) to the

first two radial boundary conditions results in a further two equations in 4 unknowns.

These may all be grouped and written in matrix form
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made, which reduces the equations to dependence on xH and y only. This means for a

fixed diameter (d) the elements of ℜ are only functions of k0 and β. Whether one uses

(2.5) (symmetric case) or (2.6) (anti-symmetric case), the resulting matrix (ℜ) is

identical. For a non-trivial solution of (2.7), the determinant of ℜ must be zero, from

which the following characteristic transcendental equation is derived.
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If the substitution, EH xx →
⊥ε

ε || is made and assuming 1|| ≈
⊥ε

ε
, (2.8) becomes identical

to the result derived by (Tobar and Mann 1991). However this latter assumption was not

made here, and from this point on I took a different approach. For any mode, the Ez and

Hz components were not assumed to be perfectly orthogonal because in fact all modes

are really hybrid. Instead, I matched the tangential components of the E and H fields

between regions 1 and 3.

2.1.4 Components Matched in Axial Direction

Again, using the last two axial direction boundary conditions and eliminating common

terms gives us two equations in 4 unknowns. Then applying (2.4a) and (2.4d) to the first

two axial boundary conditions results in a further two equations in 4 unknowns. Again,

these may all be grouped and written in matrix form
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and for the anti-symmetric case
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By setting the determinant of ℵ equal to zero, the following set of equations results:
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Changing variables to Hx  and y the set of equations (2.10) can be represented by one
equation;
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                   (2.11)

where a = +1 or −1 and b = 1 or 0, depending whether the mode is Symmetric or Anti-

symmetric.
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The coupled equations (2.8) and (2.11) are then solved numerically for 2
Hx  and 2y

using Mathematica (Wolfram 1988) (see Appendix A.1). Solutions are initially found

graphically, then using the Mathematica’s in-built Newton-Raphson algorithm, a more

accurate solution is found. The axial wave number or propagation constant β is then

calculated. Now 2
λnL =  where n is an integer and λ the wavelength in the crystal.

Because there is an exponential decay of the field outside the ends of the dielectric

cylinder, the latter should be rewritten with n = p + δ, where p is an integer and δ ≤ 1.

Therefore, β
πδ )( += pL and the minimum integer value of p is sought where p ≥ 0

and the following satisfied;

)1(1 p
L

+≤
β
π

.                                                 (2.12)

The resonance frequency is then calculated from:

]Hz[
1

2

2

22

−
+

=
⊥επ

yx

L

c
f H                                         (2.13)

Many solutions are spurious, and may be eliminated by applying further boundary

conditions on the gradients of field components at the boundaries. However, for

sapphire, I experimentally found which solutions represent real mode frequencies and

they are summarized in Table 2.1. The azimuthal mode number (m) is initially chosen.

Then the first and second radial roots correspond E-modes and H-modes with n = 1,

respectively. Higher order radial numbers (n) are calculated from successively higher

radial roots.  The third and fourth correspond to E-modes and H-modes with n = 2,

respectively. Both the S(N) and E(H) mode nomenclature are listed here but to really

get an understanding of the energy distribution parallel or perpendicular to the crystal

axis the electric and magnetic filling factors must be determined. This is done solely by

calculation.

The actual energy density pattern can be confirmed by measuring the maxima and

minima along axial, radial and azimuthal surfaces in an open dielectric resonator and

this has been done with sapphire and isotropic dielectric materials (Krupka et al. 1994).
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In rutile, however, due to the very high anisotropy, field patterns are not so easily

defined (Tobar et al. 2000b).

TABLE 2.1 REAL SOLUTIONS TO (2.8), (2.11) AND (2.12) FOR WG MODES IN SAPPHIRE.
S or N
mode

E or H
mode

a b Radial
root

n Axial
root

p

N1m Em,1,δ 1 1 1st 1 1st 0
S1m Em,1,1+δ -1 1 1st 1 1st 1
N2m Em,1,2+δ 1 1 1st 1 2nd 2
S3m Em,1,3+δ -1 1 1st 1 2nd 3
N3m Hm,1,1+δ -1 0 2nd 1 1st 1
S2m Hm,1,δ 1 0 2nd 1 1st 0
N4m Hm,1,3+δ -1 0 2nd 1 2nd 3
S4m Hm,1,2+δ 1 0 2nd 1 2nd 2

Table 2.1 shows that, in sapphire, the axial match equations correspond to modes in the

following way;

(2.10a) to H-modes with even p,

(2.10b) to E-modes with odd p,

(2.10c) to H-modes with odd p and

(2.10d) to E-modes with even p.

This is in agreement with (Tobar and Mann 1991) but the permittivity value used in

(2.10b) and (2.10d) is the perpendicular component instead of the parallel.

Also, I found experimentally which solutions represent real mode frequencies in rutile,

which has permittivity components an order of magnitude greater than sapphire. Table

2.2 summarizes the results for the first three N and S mode families.

TABLE 2.2: REAL SOLUTIONS TO (2.8), (2.11) AND (2.12) FOR WG MODES IN RUTILE.
S or N
mode

E or H
mode

a b Radial
root

n Axial
root

p

N1m Em,1,δ 1 1 1st 1 1st 0
S1m HEm,1,1+δ -1 1 1st 1 1st 1
N2m Em,1,δ 1 1 2nd 1 1st 0
S3m EHm,1,1+δ -1 1 2nd 1 1st 1
N3m Hm,2,1+δ -1 0 3rd 1 1st 1
S2m Hm,2,δ 1 0 3rd 1 1st 0

2.2 Mode Nomenclature

Two types of WG mode nomenclature are listed in Tables 2.1 and 2.2. The E or H-mode

description with subscripts, as explained in chapter 1, gives some idea of the mode
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structure with the subscripts m, n, and p describing the number of mode variations or

maxima in the field intensity as one traverses the azimuthal, radial or axial directions,

respectively. The S or N mode description (fig 2.2) on the other hand gives no

information along this line except the azimuthal mode number (m). The parameter X in

SXm or NXm counts the order of increasing frequency (f) of the mode. For example,

f(S18) < f(S28) < f(S38) < f(S48) etc. The WGE or WGH mode description (Krupka et al.

1994) is similar to the E or H mode nomenclature but along the radial and axial surfaces

counts the zero crossings of the field amplitude or mimima in the field intensity, not the

maxima.

z-
ax

is

magnetic field
electric field 

N1 S1

amplitude

resonator

symmetry plane

Figure 2.2: Schematic showing the magnetic and electric field amplitude components for N and S
symmetry. N-modes are anti-symmetric in the magnetic field amplitude whilst S-modes are symmetric.

The argument is made, and this is particularly true when modes of different families but

the same symmetry and azimuthal mode number come close in frequency, that the

indices, n and p, are not always accurate descriptors. This has been particularly noticed

in dielectric materials with high dielectric anisotropy, like rutile, where the field patterns

can be quite different (Tobar et al. 2000b).

The S (or N) mode nomenclature in these tables is not so precise and will depend on the

aspect ratio of the actual crystals used. The E (or H or EH) mode nomenclature in rutile

is also an insufficient description, because, as seen in Table 2.2, there are two modes

described identically, however the electric filling factors for these modes are quite

different. The EH or HE labelling is used to indicate that the filling factors are not close

to zero and unity. However provided that their sum is close to unity, such modes are still
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whispering gallery like. When there is a significant departure from this, it is possible to

have a new mode type, the WGRH mode (Tobar et al. 2000a; Tobar et al. 2000b), which

is explained in more detail in chapter 4.

2.3 Experimental Verification

2.3.1 Sapphire

A cylinder (d = 25.0265 ± 0.0050 mm, L = 20.00 ± 0.01 mm) of HEMEX grade

sapphire was purchased from Crystal Systems, USA (CS) with doping of approximately

0.1 % by weight of Ti3+ ions. Using these dimensions and the known dielectric

permittivity of sapphire (Kobayashi and Senju 1993; Krupka et al. 1999b), the

frequencies of a few high order whispering gallery E and H-modes were calculated

numerically using both mode matching and Galerkin-Rayleigh-Ritz methods (Krupka

1989). The Ti3+ doped resonator was cooled to 77.3 K in a liquid nitrogen cryostat,

which is explained in more detail chapter 3. I was able to identify these modes by

looking for those with the highest Q-factor around the predicted frequencies. Finally, a

system of two nonlinear determinant equations was solved (Tobar et al. 1998b);
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Using (2.14) and the measured frequencies of an E and an H-mode, the permittivity was

corrected to minimize the difference of the predicted and the measured frequency for 5

different modes. This resulted in permittivity components for Ti3+ doped sapphire,

KT 3.77
3534.11

2908.9
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


=
=⊥

ε
ε

.                                       (2.15)

Then the method developed here was used to calculate the mode frequencies for 4

symmetric and 4 non-symmetric mode families. Figs 2.3 and 2.4 show the predicted

values compared with those measured. Both figures plot frequency (f) against azimuthal

mode number (m). The theoretical predictions lay on the lines drawn through each

discrete value of m. The measured data are the open squares.
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Figure 2.3: Predicted (lines) and measured (squares) frequencies of non-symmetric (N) mode families
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Figure 2.4: Predicted (lines) and measured (squares) frequencies of symmetric (S) mode families verses
azimuthal mode number, m.

The accuracy of this method is compared with the Galerkin-Rayleigh-Ritz and mode

matching methods employed by Prof. J. Krupka (Krupka et al. 1994) (Krupka 1985) in

fig. 2.5. The difference frequency between that predicted for each method and the

measured frequency in a Ti3+-doped sapphire resonator at 77.3 K is plotted against

azimuthal mode number (m). As m increases all modes become more WG like. This

technique’s accuracy improves to approximately within +20 MHz of the measured
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frequency. The Krupka method at m = 11 has an accuracy of ± 4 MHz and is within 10

MHz for m > 2.
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Figure 2.5: This method compared with the Galerkin-Rayleigh-Ritz and mode matching used to calculate
the mode frequencies for a 25 mm × 20 mm Ti3+ doped sapphire resonator (at 77.3 K) presented in figs
2.3 and 2.4. The difference frequency from that measured is shown for 8 different modes. The same
dimensions and dielectric permittivity were used in each method.

The average overall accuracy for this method is 0.13 % for N modes and 0.2% for S

modes, when averaged over all m > 4. In fact, for higher order m values, in modes with

p < 2, the accuracy improves to better than 0.05%, which is within the dimensional

uncertainty. This compares with (Tobar and Mann 1991) which had an accuracy of

0.1% for p = 0 and 1% and 2% for TE and TM modes respectively, with p ≥ 2. This was

the better result in the sapphire with the higher aspect ratio of the two samples

measured. Krupka’s method gives an accuracy of about 0.04 % over all p values and

was limited by the dimensional uncertainty of the resonator.

One obvious reason for discrepancy involves the areas adjacent to the corners of the

resonator (fig 2.1) that are neglected in the boundary matching and another is that I only

considered an open resonator, whereas all the measured frequencies were taken with

shielded resonators. It is expected that for lower values of m the measured frequencies

should be lower, which is exactly what is measured (see fig. 2.5). On average the

predicted frequencies are more above than below zero and scattered about +10 MHz for
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m < 12. However for sufficiently high enough m, in a WG mode, the open resonator

approximation is valid.

2.3.2 Rutile

The same process was then repeated for a single crystal rutile resonator kept at 77.2 K

in a liquid nitrogen cryostat. The resonator had a higher aspect ratio with d = 20.00 mm

and L = 10.00 mm. After determining a pair of whispering gallery E and H-modes

(2.14) was used to correct the known permittivity components resulting in

KT 3.77
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13.107
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ε

.                                       (2.16)

This method was then used to calculate the mode frequencies for 2 symmetric and 2

non-symmetric mode families. Figs 2.6 shows the predicted values compared with those

measured. Again, the theoretical predictions lay on the lines drawn through each

discrete value of m, while the measured data are the open squares for S modes and black

squares for N modes. The S2 mode is the Hm,2,δ mode up to m = 6 and then changes to

EHm,1,1+δ, a very hybrid mode, with mixed filling factors either side of 50% at these

values of m.
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Figure 2.6: Predicted (lines) and measured frequencies of non-symmetric (N) mode families (black
squares) and symmetric (S) mode families (open squares) verses azimuthal mode number, m.
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Figure 2.7: This method compared with the Galerkin-Rayleigh-Ritz and mode matching method used to
calculate the mode frequencies for a 20 mm × 10 mm rutile resonator (at 77.2 K) presented in fig. 2.6.
The difference frequency from that measured is shown for 4 different modes. The same dimensions and
dielectric permittivity were used in each method.

The accuracy of this method is compared with Krupka’s in fig. 2.7. And again the

difference frequency between that predicted for each method and the measured

frequency in a rutile resonator at 77.2 K is plotted against azimuthal mode number (m).

This technique’s accuracy improves to approximately ±10 MHz of the measured

frequency whereas Krupka’s method has an accuracy of ± 5 MHz for m > 4.

The average overall accuracy for this method is about 0.2 % for all modes with n = 1

and 0.5% for modes with n = 2 (see fig. 2.7), when averaged over all m > 4. This

compares with Krupka’s method, which gives an accuracy of between 0.02% and 0.09

% depending on the mode family and is limited by the dimensional uncertainty of the

resonator.

2.4 Filling Factors

2.4.1 Electric Energy Filling Factors

Mode identities can be confirmed by calculating the electric energy filling factors in the

perpendicular and parallel directions. This is done numerically by employing an

algorithm in which ε⊥ and ε|| are slightly perturbed, with ε
δε  ~ 10-6, and the resulting
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shift in frequency (δf) calculated. Filling factors are then computed according to the

definition from section 1.1,
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
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For WG modes 1
||

≈+
⊥ εε pp , which is also another test of the algorithm. For example,

fig. 2.8 shows the perpendicular electric filling factor for 6 WG modes in a (d = 24.89

mm, L = 23.60 mm) monocrystalline sapphire cylinder. Above m = 6, S2m and N3m

become WGE modes while N1m becomes a WGH mode. S1m becomes WGH like above

m = 10 and N2m and S3m tend towards WGH like but even at m = 11 have sizable

components in the other orthogonal axis.
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Figure 2.8: Electric energy filling factors perpendicular to the crystal axis calculated for a 25 mm x 24
mm single crystal sapphire cylinder.

A comparison of the electric filling factors calculated from this method and Krupka’s

show they differed by less than a few percent and less than 0.1% in the dominant

component at high values of m. The exception is where modes of the same symmetry

are close in frequency. In such a case, the filling factors are dramatically altered. This is

illustrated in fig. 2.9. The calculated electric filling factors are shown for the 25 mm ×

20 mm Ti3+ doped resonator in the S2m and S3m modes which swap identity at m = 10,

through a mode interaction. This is the result of the frequency of the Hm,1,δ mode

becoming higher in frequency than the Hm,1,3+δ mode for m > 9. In fact, at m = 10 only
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one of these modes, the Hm,1,δ mode, could be found experimentally. This method does

not correctly calculate the filling factor value in this overlap region, as the separation of

variables technique does not allow for the interaction of modes.
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Figure 2.9: Electric filling factors both parallel and perpendicular to the c-axis as calculated by this
method and the Galerkin-Rayleigh-Ritz and mode matching methods (by J. Krupka) for the Hm,1,δ mode in
the 25 mm × 20 mm Ti3+ doped resonator.

This technique can also be applied to isotropic crystals and ceramic dielectric cylinders.

Using the same computer algorithm, but using identical values for ε⊥ and ε||, the mode

frequencies and electric filling factors are calculated. The method was applied to a (d =

10 mm, L = 6.6 mm) cylindrical ceramic puck made from 3)(
3

2
3

1 OTaMgBa  (BMT)

(Ratheesh et al. 1998). This material had an isotropic permittivity of 24.65 and though

hard to excite H-modes in the open dielectric, predicted frequencies and electric filling

factors of the fundamental E-mode family (Em,1,δ) agreed quite well with measurement.

2.4.2 Dimensional Energy Filling Factors

Similarly to the above, dimensional energy filling factors may be calculated. The radial-

energy-filling factor (pd) and the axial-energy-filling factor (pL) are calculated by

perturbing the appropriate dimension (δd, δL) and computing
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                                                       (2.18)

from the calculated frequency shift (δf). For a quartz resonator of dimensions d = 49.88

mm and L = 32.23 mm, these were computed and are listed in Table 2.3 for a WGH

mode (S115) and a WGE mode (S214).

TABLE 2.3: ELECTRIC AND DIMENSIONAL FILLING FACTORS CALCULATED FOR

2 WG MODES IN A 49.88 mm BY 32.23 mm QUARTZ RESONATOR.
Mode

⊥εp
||εp dp Lp

S115 E15,1,1+δ 0.0864 0.9103 0.9379 0.0621
S214 H14,1,δ 0.9618 0.0070 0.9859 0.0141

From Table 2.3 it is clear that the dominant frequency shift due to a dimensional change

occurs in the radial direction. The filling factor pd is somewhere between 15 to 70

greater than pL.   
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In this chapter, I present our investigations of a resonator frequency-temperature

compensation technique based on doping into a sapphire monocrystal about 1000 ppm

Ti3+ ions in one sample and approximately the same concentration of Ti4+ ions in

another.

In order to gain some preliminary results, a 12 mm diameter, 8 mm long laser quality

Ti3+-doped sapphire cylinder (with crystal-axis aligned parallel to the cylinder-axis) was

purchased in Poland and tested at the National Institute of Standards (NIST), USA. That

work, by Drs M.E. Tobar, J. Krupka and R. Geyer, examined frequencies and Q-factor

dependencies as a function of temperature at microwave frequencies in K-band. Quality

factor and resonance-frequency measurements were performed from 16 to 77 K using

identified E6,1,δ (21.40 GHz), H5,2,δ (21.45 GHz) and H6,2,δ (23.87 GHz) modes. At 50 K,

Q-factors were about 3 × 105, which appeared to be limited by factors other than

paramagnetic losses, possibly dislocations or other impurities derived from the doping

technique.

3.1 Resonators

Following this two cylinders (d = 25.027 ± 0.005 mm, L = 20.00 ± 0.01 mm) of

HEMEX grade sapphire were purchased from Crystal Systems, USA (CS) with doping

levels of approximately 0.1 % by weight (or 1000 ppm) of Ti3+ ions in one and Ti4+ in

the other. The Ti4+-doped sample was produced from a Ti3+ doped resonator where the

Ti3+ ions were converted to Ti4+ ions. The process left an unknown residual of Ti3+ ions.

The Ti3+ ion was indicated by a strong pink color in the Ti3+-doped sample but only a
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slight pinkish tinge in the Ti4+-doped sample. Also a “undoped” Russian grown sapphire

resonator (d = 24.89 ± 0.01 mm, L = 23.60 ± 0.01 mm) was used as a control sample.

d

L

Figure 3.1: Cylindrical resonators of length, L, and diameter, d, with an internal hole for support were
used. The three resonators were: (1.) Ti3+-doped Crystal Systems sapphire, (2.) Ti4+-doped CS sapphire
(both d = 25.0 mm, L = 20.0 mm) and (3.) “undoped” sapphire (d = 24.89 mm, L=23.60 mm).

The resonators were placed in a copper cavity of internal dimensions, 40 mm diameter

and 46 mm high. They were supported by 5 mm diameter copper posts that were held in

place by a weak spring mechanism like that shown in figure 4.10.

During the initial experiments the resonator and the copper cavity were cleaned only

with alcohol. The final data on the E12,1,δ  & H9,1,δ  modes in the CS resonators was taken

after they were first washed with alcohol then placed in a solution of pure nitric acid

with a few drops of hydrofluoric acid, which then was placed in an ultrasonic bath for

one hour. The nitric acid removes any copper particles and the hydrofluoric was added

in case there was any contamination from niobium metal that was kept in the lab. They

were then washed in de-ionised water, covered with pure methanol and transferred from

the fume cabinet to the clean room. There the cavity was then assembled on the lamina

flow table.

The copper cavity was placed in an evacuated can within a cryostat and cooled to 77 K

with liquid nitrogen. By pumping on the liquid nitrogen it solidified at about 52 K.

Whispering gallery modes in the dielectric resonators were excited and examined at

microwave frequencies in the 4 to 20 GHz range. A signal from a HP 8673H synthesizer

was mixed with a signal from a Marconi 2031. This was filtered to select the correct

side band. DBS microwave doublers placed after the HP 8673H synthesizer were used

to examine resonance frequencies in the range 13 to 20 GHz. The Marconi synthesizer

was used because it has a frequency resolution of 1 Hz, and with unloaded bandwidths

of some E-modes approaching 10 Hz this was required. Power was coupled in and out
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of the cavity by loop probes connected to coaxial transmission lines. Coupling on both

ports was set extremely low, so that the loaded Q-factor was essentially equal to the

unloaded Q-factor.

TABLE 3.1: PREDICTED MODE ELECTRIC AND MAGNETIC FILLING FACTORS AND FREQUENCY
TABULATED WITH THE MEASURED VALUES OF FREQUENCY (Meas) AT 77.3 K. THE EXPERIMENTALLY

DETERMINED FREQUENCY-TEMPERATURE TURNING POINT (TTP) AND Q-FACTORS ARE ALSO SHOWN.

Mode FAMILY Electric-filling
factors

Magnetic-
filling factors

FREQUENCY TTP Q [×10-6]

E(H)m,n,p S(N)Xm ⊥ || ⊥ || Predict Meas [K] 50K 77K

E3,1,δ N13 0.2016 0.7609 0.7568 0.0257 6.2646 6.2676

E4,1,δ N14 0.1378 0.8313 0.7812 0.0192 7.5573 7.5563

E5,1,δ N15 0.0988 0.8971 0.8019 0.0146 8.8512 8.8500 1.51 1.52

E6,1,δ N16 0.0752 0.9036 0.8195 0.0113 10.1425 10.1409 34.5 2.02 2.03

E7,1,δ N17 0.0578 0.9218 0.8341 0.0086 11.4269 11.4250 34.0 2.05 2.10

E8,1,δ N18 0.0465 0.9370 0.8470 0.0070 12.7035 12.7014 34.0 2.40 3.60

E9,1,δ N19 0.0390 0.9477 0.8677 0.0077 13.9729 13.9703 31.0 3.10

E10,1,δ N110 0.0317 0.9549 0.8669 0.0046 15.2346 15.2318 30.0 2.10 2.00

E11,1,δ N111 0.0274 0.9616 0.8741 0.0038 16.4900 16.4870 29.0 2.00

E12,1,δ N112 0.0229 0.9663 0.8813 0.0029 17.7397 17.7364 29.0 1.50 2.80

HE3,1,1+δ N23 0.6838 0.1506 0.3928 0.4711 8.6597 8.6551 68.0 0.24

HE4,1,2+δ N24 0.6839 0.2223 0.5186 0.4100 9.9640 9.9539 65.5 0.90

HE5,1,2+δ N25 0.5638 0.3816 0.6903 0.2346 11.1408 11.1274 61.0 1.32

EH6,1,2+δ N26 0.4546 0.5094 0.7749 0.1311 12.2526 12.2446 56.0 1.53

EH7,1,2+δ N27 0.3760 0.5975 0.8121 0.0845 13.3663 13.3590 50.0 1.00

EH8,1,2+δ N28 0.3167 0.6619 0.8329 0.0605 14.4875 14.4819 48.0 2.38

E9,1,2+δ N29 0.2694 0.7109 0.8468 0.0462 15.6215 15.6165 47.0 1.58

E10,1,2+δ N210 0.2322 0.7503 0.8572 0.0368 16.7654 16.7610 45.0 2.20

E11,1,2+δ N211 0.2025 0.7840 0.8648 0.0308 17.9183 17.9135 44.0 1.00 1.80

E12,1,2+δ N212 0.1765 0.8091 0.8725 0.0248 19.0771 19.0728 1.50 1.70

HE3,1,1+δ N33 0.6573 0.2870 0.7171 0.1416 9.4093 9.4036 63.0 0.18

HE4,1,1+δ N34 0.6882 0.2631 0.5239 0.3289 10.4980 10.5030 65.0 0.94

H5,1,1+δ N35 0.7820 0.1692 0.3129 0.5737 11.7493 11.7474 68.5 0.74

H6,1,1+δ N36 0.8492 0.1038 0.2047 0.7190 13.0750 13.0718 70.0 0.54

H7,1,1+δ N37 0.8878 0.0722 0.1531 0.7925 14.4204 14.4265 71.0 0.43

H8,1,1+δ N38 0.9103 0.0548 0.1239 0.8345 15.7762 15.7769 71.5 0.11

H9,1,1+δ N39 0.9239 0.0442 0.1053 0.8611 17.1271 17.1339 72.5 0.58

H10,1,1+δ N310 0.9318 0.0384 0.0933 0.8788 18.4903 18.4897 0.64

H11,1,1+δ N311 0.9368 0.0366 0.0903 0.8862 19.8422 19.8477

H12,1,1+δ N312 0.9358 0.0383 0.0872 0.8937 21.1837

EH3,2,δ N43 0.2520 0.6991 0.7252 0.1376 9.7135 9.7209 43.5

E4,2,δ N44 0.1447 0.8187 0.8091 0.0742 11.1876 11.1874 39.0

E5,2,δ N45 0.0983 0.8718 0.8443 0.0483 12.6324 12.6305 37.0 1.12 1.07
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E6,2,δ N46 0.0735 0.9010 0.8629 0.0351 14.0542 14.0517 35.0 1.45

E7,2,δ N47 0.0585 0.9200 0.8750 0.0275 15.4559 15.4533 34.0 2.00

E8,2,δ N48 0.0498 0.9332 0.8837 0.0235 16.8400 16.8371 32.0 2.43

E9,2,δ N49 0.0433 0.9407 0.8899 0.0215 18.2084 18.2051 2.23

EH3,1,1+δ S13 0.5286 0.2993 0.5390 0.3027 7.3432 7.3385

EH4,1,1+δ S14 0.4060 0.5349 0.7450 0.1171 8.6023 8.5976 1.00 0.55

EH5,1,1+δ S15 0.3127 0.6501 0.7931 0.0653 9.7965 9.7934 49.5 0.96 1.10

E6,1,1+δ S16 0.2484 0.7238 0.8157 0.0448 10.9931 10.9906 46.0 1.70 0.95

E7,1,1+δ S17 0.2010 0.7765 0.8315 0.0334 12.1967 12.1942 43.0 3.80 2.31

E8,1,1+δ S18 0.1655 0.8154 0.8444 0.0261 13.4045 13.4024 42.0 3.10 2.23

E9,1,1+δ S19 0.1388 0.8459 0.8550 0.0207 14.6151 14.6130 40.0 1.90 2.20

E10,1,1+δ S110 0.1169 0.8681 0.8644 0.0169 15.8280 15.8254 38.0 2.40 2.20

E11,1,1+δ S111 0.0997 0.8875 0.8723 0.0114 17.0406 17.0381 37.5 2.22

E12,1,1+δ S112 0.0868 0.9022 0.8793 0.0114 18.2531 18.2506 2.80

HE3,1,δ S23 0.6515 0.1815 0.306 0.4686 7.9362 7.9470

H4,1,δ S24 0.8153 0.0590 0.102 0.7791 9.4684 9.4479 71.5 0.33

H5,1,δ S25 0.8879 0.0290 0.0602 0.8751 10.9344 10.9320 72.0 0.61

H6,1,δ S26 0.9195 0.0191 0.0450 0.9130 12.3857 12.3852 74.0 0.67 0.80

H7,1,δ S27 0.9363 0.0151 0.0377 0.9311 13.8173 13.8169 74.0 0.79

H8,1,δ S28 0.9433 0.0142 0.0371 0.9391 15.2344 15.2328 74.0 0.70 0.65

H9,1,δ S29 0.9371 0.0268 0.0585 0.9301 16.6330 16.6328 74.0 0.90 0.66

HE10,1,3+δ S210 0.6943 0.2787 0.5183 0.3386 17.9488

EH11,1,3+δ S211 0.3392 0.6425 0.8311 0.1000 19.0576 19.0567

EH12,1,3+δ S212 0.2867 0.6980 0.8580 0.0531 20.1574

HE3,1,2+δ S33 0.4764 0.0098 0.0830 0.3488 9.5856

HE4,1,2+δ S34 0.7881 0.1134 0.4490 0.4313 11.2618 11.2485 68.0 0.31

HE5,1,2+δ S35 0.7111 0.1680 0.4868 0.4567 12.5132 12.5047 68.0 0.81 0.81

HE6,1,3+δ S36 0.6882 0.2616 0.5893 0.3698 13.6957 13.6856 64.5 0.86

HE7,1,3+δ S37 0.5774 0.3386 0.7162 0.2288 14.7928 14.7845 61.5 0.90

HE8,1,3+δ S38 0.4851 0.4856 0.7812 0.1442 15.8535 15.8485 55.0 1.05

EH9,1,3+δ S39 0.4305 0.5458 0.7894 0.1169 16.9201 16.9169 53.0

HE10,1,δ S310 0.6267 0.3497 0.3485 0.5900 18.0723 18.0719 67.5 0.72

H11,1,δ S311 0.9416 0.0302 0.0411 0.9162 19.4245 19.4131

HE3,2,1+δ S43 0.5344 0.3545 0.6200 0.2642 10.0816 10.0895 60.0

EH4,1,3+δ S44 0.3023 0.3856 0.5050 0.1702 11.8283 11.8227 50.5

HE5,1,3+δ S45 0.5299 0.4283 0.7896 0.1017 13.0907 13.0880 61.0 0.76

HE6,1,2+δ S46 0.6309 0.3386 0.6094 0.2798 14.1722 14.1743 63.5 0.64

H7,1,2+δ S47 0.7286 0.2420 0.4286 0.4823 15.3702 15.3650 66.5 0.77

H8,1,2+δ S48 0.7949 0.1738 0.3217 0.6135 16.6225 16.6234 68.5 0.13

H9,1,2+δ S49 0.8364 0.1339 0.2609 0.6896 17.9084 17.9102 70.0
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As explained in chapter 2, by using the resonator dimensions and the known dielectric

permittivity of sapphire, the frequencies of a few high order WG fundamental E and H-

modes were calculated numerically using both mode matching and Galerkin-Rayleigh-

Ritz methods. At 77.3 K in the 1000 ppm Ti3+-doped resonator, I was able to identify

these modes by looking for those with the highest Q-factor around the predicted

frequencies. Then the permittivity was corrected to minimize the difference frequency

from 5 modes. After this, the corrected permittivity was used to calculate all predicted

frequencies and filling factors listed in Table 3.1

A schematic of the experimental setup is shown in fig. 3.2. To obtain data over a range

from 4.2 K to above 100 K liquid helium was used to cool the resonator. It was then

allowed to warm sufficiently slowly to keep the resonator in thermal equilibrium with

the copper cavity. The temperature at the copper cavity was read out with carbon glass

and platinum thermometers. The frequency was read off a HP 5350A frequency counter.

From this the frequency-temperature turning point data was determined for the 8 mode

families listed in Table 3.1, and plotted in figs 3.3 and 3.4.

resonator

oscilloscope

microwave
source

cryostat

computerized
Q-factor &
frequency

measurement

Ohms
temperature
measurement

carbon-glass
thermometer

frequency
counter

Figure 3.2: Schematics of experimental set up.

3.2 Frequency-Temperature Compensation

3.2.1 Experimental Results

I found that frequency-temperature compensation (turning) points existed for all

measured modes in the Ti3+-doped sample from about 74 K in H-modes down to 27 K

in E-modes (see figs 3.3 and 3.4). In all modes, there was a monotonic trend observed of

either increasing or decreasing frequency-temperature turning point (TTP) with

increasing m. One notable exception was in the S3 mode at m = 10. This was due to the
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mode “overlap” with the S2 mode as described in section 2.4.1. At this value of the

azimuthal mode number, the magnetic filling factor departed from the normal trend and

because of its much higher value in the parallel component (compared with at m = 9)

that the TTP increased.
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Figure 3.3: Turning point temperature (TTP) verses azimuthal mode number (m) for the anti-symmetric
(N) mode families.
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Figure 3.4: Turning point temperature (TTP) verses azimuthal mode number (m) for the symmetric (S)
mode families.

In order to measure the resonance frequency and the Q-factor of a mode as a function of

temperature, a computer controlled data collection program (Luiten et al. 1996a) was

implemented. This program rapidly sampled the diode detector voltage across the

resonance as the resonator warmed up. The software fits a Lorentzian curve, from which
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the bandwidth at the minus 3 dB point and the center frequency are determined. The

unloaded quality factor was calculated from the latter.

Since the N18 and S26 modes had the highest Q-factors at 77.3 K (see figs 3.5 and 3.6)

and were from the fundamental Em,1,δ and Hm,1,δ mode families, they were initially

chosen as candidates for detailed curve fitting.
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Figure 3.5: Q- factor at 77.3 K verses azimuthal mode number (m) for the three most E-like modes.
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Figure 3.6: Q-factor at 77.3 K  verses azimuthal mode number (m) for the two most H-like modes.

However, below 10 K, their Q-factors were not as high as in modes with greater

azimuthal mode number (m) and thus may have been limited by cavity wall losses.
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For a resonator with metallic walls where radiation losses are negligible, the unloaded

Q-factor (Q0) is given by

S

S

dielmag G

R

QQQ
++= 111

0
                                          (3.1)

where RS is the surface resistance of the cavity walls and GS is a geometric factor

describing the de-coupling of the electromagnetic fields at the walls from the total

magnetic energy:

∫∫

∫∫∫
=

S

V
S

dSH

dVH

G
2

tan

2µω

 ,                                           (3.2)

where ω is the angular frequency of the resonance, H the magnetic field strength, and

Htan the magnetic field strength tangential to the surface S.
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Figure 3.7: Q-factor verses temperature for some modes below 10 K.

At low temperatures, 1/(Qmag f) is essentially the same for all high-order WG modes in

the same family. This is mostly determined by the magnetic energy filling factors,

which are almost identical for large m. When Q increases with increasing m (and

therefore mode frequency), it is not limited by magnetic but dielectric and wall losses.

Therefore the Q-factor of S26 (not shown), S28 and N18 modes (see fig. 3.7) must be

limited by wall losses. As m increases, the electromagnetic confinement to the dielectric
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increases and the dependence on the geometric term in (3.1) becomes negligible. As

most of the energy of these high order WG modes exists within the dielectric but close

to the dielectric/vacuum interface, the frequencies also are fairly insensitive to cavity

wall effects (Ivanov et al. 1993).
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Figure 3.8b: Fractional frequency axis of figure 3.8a magnified 100 times

After the initial investigation using the lower order modes, the modes, N112

(E12,1,δ) at 17.73 GHz and S29 (H9,1,δ) at 16.63 GHz, were chosen and measured from 4.5

K to above 130 K in the Ti3+-doped CS resonator. The whole process was repeated for

the Ti4+-doped sample and frequency-temperature turning points found between 9 and
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35 K. Finally, the same modes were measured in the “undoped” sapphire. Figs 3.8a and

3.8b show the fractional frequency as a function of temperature for data from the CS

doped resonators. The highest frequency (thus highest m) fundamental E and H-modes

that could be measured were the E12,1,δ and H9,1,δ modes in the measured samples. They

will subsequently be simply referred to as the E-mode and the H-mode in the following.

3.2.2 Thermal Expansion and Dielectric Temperature Dependence

A dielectric resonator’s fractional frequency may be written in the form given by

)()(
)(

0

0 TCTL
f

Tff +=−
                              (3.3)

where f0 is the frequency of the resonance at absolute zero if there were no paramagnetic

impurities present. C(T) is a paramagnetic or Curie term. L(T) is the lattice term, which

describes the frequency-temperature dependence due to the combined effects of the

direct change in dimensions plus the change in relative permittivity resulting from a

change in dimensions. Assuming there are no paramagnetic impurities, (1.6) becomes
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L(T) can be derived by integrating (3.4).  There are two pairs of terms representing the

frequency shift from the change in the relative dielectric and the direct frequency shift

resulting from a change in dimensions of the crystal due to thermal expansion.  Using

published data for *
dα  and *

Lα  (fig 3.9) from (White and Roberts 1983), the

“dimensional” contribution to the fractional frequency shift of the E and the H-mode in

the “undoped” sapphire was determined.  The parameters pd and pL were calculated

(Table 3.2) and pL may be neglected as insignificant.

The “dimensional” contribution was then separated from the “dielectric” contribution

and the results are plotted in figs 3.10 and 3.11 for the E and H-mode, respectively.

Actually, both modes show turning points, which turn out to be the result of Ti3+
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doping, therefore the “dielectric” contribution contains a “paramagnetic” contribution.

Both figures show the measured mode fractional frequency (curve 1) and the

“dimensional” frequency shift (curve 2) assume the same temperature dependence with

increasing temperature. The “dielectric” frequency shift lay slightly below the

“measured” frequency shift (curve 1). In both cases, the thermal expansion contribution

is less than 5% of the overall frequency shift.

TABLE 3.2: ELECTRIC AND DIMENSIONAL FILLING FACTORS CALCULATED FOR THE E AND
THE H-MODE IN THE (24.89 mm BY 23.60 mm) UNDOPED SAPPHIRE RESONATOR

Mode
⊥εp

||εp dp Lp

N112 E12,1,δ 0.0165 0.9831 0.9855 0.0145
S29 H9,1,δ 0.9694 0.0076 0.9867 0.0133
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Figure 3.9: Thermal expansion coefficients of sapphire taken from (White and Roberts 1983)

A calculation of the ratio of the “measured” fractional frequency shift to the

“dimensional” contribution for data well away from the turning point temperature,

yields a constant, 23.3 ± 0.5 in the E-mode and 16.4 ± 0.9 in the H mode. That is,

constant)(
0

**

0

0 →+−
∫

T
LLdd dTpp

f

ff αα                                    (3.5)

The main uncertainty in the H-mode data arises from the uncertainty in determining f0,

the frequency at absolute zero if no paramagnetic impurities were present. However, the

calculation is not very sensitive to this error as it is fractional in frequency.

*
dα ~ 0.5 × 10-12 T3

*
Lα ~ 0.7 × 10-12 T3
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Figure 3.10: N112 (E-mode) “measured” fractional frequency shift (open circles - curve 1) in the
“undoped” sapphire with fractional frequency shifts due to “dielectric” (triangles – curve 1) and
“dimensional” (curve 2) contributions.
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Figure 3.11: S29 (H-mode) “measured” fractional frequency shift (open circles - curve 1) in the
“undoped” sapphire with fractional frequency shifts due to “dielectric” (triangles – curve 1) and
“dimensional” (curve 2) contributions.

I repeated the calculation for the E-mode in the Ti4+-doped resonator as it was least

affected by the paramagnetic impurity, and, in this case, well away from the turning

point, the ratio was 23.6 ± 0.6. This is in excellent agreement with the result for the

same E-mode in the “undoped” resonator. As before, I assumed no knowledge of the

functional form of the thermal expansion coefficient over whole the temperature range

of the calculation. Even so, at high temperatures, where the paramagnetic effects are

expected to be relatively small and independent of temperature, the ratio is constant.
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Assuming high order WG modes (for H-modes, 0
||

≈εp , 1≈
⊥εp  and for E-modes,

1
||

≈εp , 0≈
⊥εp ) and setting pL = 0, (3.3) can be rewritten separately for E and H-

modes as

∫∫ =+≈








−
−

=
T

d
T

d
E

E dTdTTC
f
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TL
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0
**

0
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2

1
()(

)(
)( αααε                   (3.6b)

It may seem more obvious to simply differentiate (3.3) and subtract *
dα , to obtain a

constant at high temperatures. I tried that method, but it requires curve-fitting

polynomials in order for perform the differentiation and is fraught with errors, which are

very sensitive to the accuracy of the fit. Since the measure data is in the “integral” form,

I divided by the ∫
T

d dT
0

*α  to determine value of the constant. Only after that the

derivative is taken as shown below.

Now *
⊥εα results from thermal contraction of the diameter, whereas *

||εα results from

thermal contraction of the length of the crystal.  By differentiating (3.6b) it can be

shown that

4.15
2

1 =
∂

∂ ⊥

⊥ d

d ε
ε

                                                    (3.7)

and differentiating (3.6a) with the values for *
Lα and *

dα taken from (White and Roberts

1983) for T < 20 K, the following results.

9.15
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3.22
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L
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L ε
εα

αε
ε

                              (3.8)

The same computations were carried out on all the data from these modes mentioned

and the calculated value of 
x

x i

i ∂
∂ε

ε2

1
 is shown in fig. 3.12. This is valid where (3.5) is

constant or a slowly varying function. Here x = d or L and εi refers to the corresponding
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permittivity component with i = || or ⊥. From this data, it is apparent that the result

oscillates about the value of 16. Above 80 K, there seems to be a downward trend.

The derived value from (3.8) is in excellent agreement with the directly measured value

in (3.7). The data from (Shelby and Fontanella 1980), at 300 K, showed the fractional

change in the square root of the permittivity was related to the fractional change in

dimension due to thermal expansion by a factor of 11.3.  The fractional change in

frequency, given by (Braginsky et al. 1985) and derived from (3.6) is

∫


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                   (3.9)

where ∆x/x represents the integrated fractional thermal expansion from absolute zero up

to a temperature T of either the diameter (d) or length (L) of the resonator. The

parameters {j, x, i} = {H, d, ||} or {E, L, ⊥}. From the thermal expansion coefficients

),( **
Ld αα , at low temperatures, I was able to estimate the lattice term (L(T)), quite

separately from the paramagnetic term (C(T)). Using *
dα = 0.5 × 10-12 T3/K and *

Lα = 0.7

× 10-12 T3/K (White and Roberts 1983), which fit the data of fig. 3.9 well for T < 30 K,

as well as xx ii ∂∂εε )(21  = 16 from fig. 3.12, it follows from (3.9), the resulting

lattice terms for E and H-modes are








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∫
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                               (3.10)

Therefore, for any WG mode in general, as the dielectric term in (3.4) is a linear

combination of dielectric components perpendicular and parallel to the crystal axis,

(3.10) can be written as

L(T) = A 10-12 T4       with  2.1 ≤ A ≤ 3   and   T < 35 K               (3.11)

By curve fitting to the fractional frequency of modes in the “undoped” sapphire, the

coefficient A was determined (see Table 3.3). Also, the coefficient A was determined for
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E-modes in the Ti4+-doped sapphire. In the H-modes in the Ti4+ doped sapphire and in

all modes in the Ti3+-doped sapphire no such fit was possible due to the strong effects of

the paramagnetic impurities. From a comparison of A with published data (Luiten et al.

1996b), the T4 fit for L(T) was valid to 35 K and in good agreement with (3.10). Above

35 K, additional terms in T are required. Slight differences in the measured value of A

and that determined from (3.10), result from the uncertainty in the measured value of

xx ii ∂∂εε )(21 . From 20 to 90 K (fig. 3.12), the latter’s value ranges from 15.5 to 17.

Applying the upper limit to (3.10), “17” becomes “18” and A becomes 3.15 and 2.25 for

E and H-modes, respectively.
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Figure 3.12: The calculated value of xx ii ∂∂εε )(21  where x = d or L and εi refers to the

corresponding permittivity component. Data for the “undoped” sapphire was taken from figs 3.10 and
3.11 for the E and H-modes, respectively. The calculated value of the coefficient xx ii ∂∂εε )(21 is only

valid where it is constant or a slowly varying function

TABLE 3.3: THE COEFFICIENT A IN (3.11) FITTED TO DATA OF LISTED MODES IN TWO RESONATORS.
PUBLISHED DATA (LUITEN ET AL. 1996B) GAVE COEFFICIENTS FOR E AND H-MODES OF 3.3 AND 2.1

RESPECTIVELY.
Mode Ti4+ “undoped”

N18 E8,1,δ 3.38 3.38
S26 H6,1,δ * 2.26
S29 H9,1,δ * 2.25
N112 E12,1,δ 3.33 3.31

* indicates modes where the paramagnetic term was so strong that such a fit was impossible.
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3.2.3 Van Vleck Paramagnetism

The Ti3+ ion has one electron in the 3d orbital, making it magnetic. In the sapphire

lattice, its ground state is split by the crystalline field and spin-orbit coupling, resulting

in a doubly degenerate Kramer’s doublet (fig. 3.13) with two allowed spin quantum

numbers (±mJ). That is, spins will align parallel or anti-parallel to the applied magnetic

field. Excited states are thermally accessible, ie within kT of the ground state. A

magnetically dilute (< 0.1%) concentration of Ti3+ ions act independently and must

obey Boltzmann’s statistics. On cooling, thermally excited states become less likely and

thus spins of these 3d electrons have a progressively higher probability of alignment.

This alignment occurs to minimize the orientation energy of the spin.

Since there is often confusion why Boltzmann statistics are used here, some explanation

is appropriate. Electrons obey Fermi-Dirac statistics and within the ion definitely obey

the Pauli exclusion principle as they compete for quantum states. However, once the

paramagnetic properties of the ion are established, the assumption above of

independent, non-interacting ions implies an ensemble of spatially separate

distinguishable ions. Therefore, from this spatial distinguishability it follows that

Boltzmann statistics are the correct choice (Tolman 1938).

The process of forming Ti4+ ions in the sapphire crystal involved a conversion of Ti3+

ions leaving some residual Ti3+ ions. Literature searches described Ti3+ ions in sapphire

as strongly paramagnetic but gave no indication about Ti4+ ions. These facts led me to

initially assume that there was only one paramagnetic species, the Ti3+ ion, in both

titanium-doped sapphire resonators. Thus, the Curie term in (3.3) becomes

)(')(
2

1
)( TpTC χωµ= .                                           (3.12)

Here pµ(ω) is the magnetic filling factor for the mode with components parallel )(
||µp

and perpendicular )(
⊥µp  to the crystal axis, where 1

||
≤+

⊥µµ pp . χ’(T) is the real part

of the static or dc paramagnetic susceptibility resulting from the energy level differences

in spin states of the Ti3+ ion with a single unpaired electron in the 3d1 orbital. These

ionic spin states have been split by the cubic crystalline field, with a trigonal distortion
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and spin-orbit coupling into a triplet of degenerate Kramers’ doublets (Byvik and

Buoncristiani 1985), which can only be split by an applied magnetic field. Because the

first energy level is 1134 GHz above the ground state it cannot be directly excited with

our microwave field, therefore any ac susceptibility component can be neglected.
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Figure 3.13: Energy levels of spin states of Ti3+ ions in crystalline sapphire. E0 is the ground state and E1

and E2 are the first two excited states. All three states a degenerate (doublets). No other energy levels are
involved in the paramagnetic effect of Ti3+ because the higher states are thermally inaccessible.

Equation (3.12) may be generalised for any resonance in a crystal where the

susceptibility is anisotropic (Bowers and Owen 1955).
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Of the two CS samples, the Ti3+-doped sapphire had the highest concentration of Ti3+

ions at about 1000 ppm and may be described by the Van Vleck equation. However,

because ratio of ZFS/k for the Ti3+ ion is approximately 54 K, the condition that kT >>

ZFS is not true and the standard Curie law (1.7) is not valid.  Hence, in this case, the full

Van Vleck equation must be used over the temperature range of the measurements. The

full Van Vleck equation for this three level system in a magnetic field is given by

(Smith 1970) as
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where i  = �, || specifies the two orthogonal components of the anisotropic suscepti-

bility, perpendicular and parallel to the crystal axis. �n = En – E0 the ZFS energy, where

En (n = 1,2) represents the excited state energy level and E0 the ground state energy

level. Anisotropic g-factors )( n
ig have been experimentally measured at 0

⊥g  � 0.1 and

0
||g  = 1.067 (Rei 1962) in the ground state and 1

⊥g � 0.1 and 1
||g = 2.00 (Joyce and

Richards 1969; Nelson et al. 1967) in the first excited state. The energy levels are

linearly split with the applied magnetic field. That is, by ±mJg�µBH� perpendicular and

±mJg||µBH|| parallel to the crystal axis, where H⊥, H|| are the respective components of

the applied magnetic field and µB the Bohr magneton. However, in this experiment no

external dc magnetic field was applied, only the alternating magnetic field from the

microwave source, which results in a dominant magnetic field component aligned

perpendicular or parallel to the crystal axis. Over one cycle of the microwave pump

signal, there is no net magnetic field component and the first term of (3.14) must be

zero, resulting in

∑
∑
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n
kT

n
kT

i
n

i n

n

N
)exp(

)exp(
' δ

δα
χ .                                            (3.15)

In an applied dc magnetic field, the latter is much weaker than the temperature

dependent first term of (3.14) and is known as the Van Vleck temperature independent

paramagnetic (TIP) susceptibility. This susceptibility can be interpreted as zero first

order response of the spins to the applied alternating magnetic field leaving only a small

second order contribution )( i
nα  (Smith 1970).

TABLE 3.4: RELATIVE MAGNITUDES OF THE ANISOTROPIC CURIE TERM ACCORDING TO (3.16).
Dopant Ti3+ ion Mo3+ ion

Mode E12,1,δ H9,1,δ E12,1,δ H9,1,δ
20 )( ⊥⊥

gpµ 8.8×10-3 3.0×10-5 14.1 4.6×10-2

20
||||

)(gpµ 6.6×10-2 1.138 0.234 3.72
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Figure 3.14a: Fractional frequency offset as a function of temperature for the H9,1,δ  mode in the Ti4+-
doped sapphire. The experimental data lay over the curve fit.
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Figure 3.14b: Enlargement of the low
temperature region of fig. 3.14a.

Figure 3.14c: Enlargement of the low
temperature region of fig. 3.14a after Mo3+ ions
have been added to the curve fit.

Clearly from the first term in (3.14), when there is an applied dc magnetic field, χ’

depends on 2)( n
ig  and not on the strength of the magnetic field (as it does not explicitly

appear in the expression). If it is assumed that in this case, when only an ac magnetic

field is applied, the dependence on 2)( n
ig  also holds, it follows from (3.13), that

                         
2)()( n

iii gpTC µ∝                                                (3.16)

where i  = ⊥, ||. For ground state g-factors, 20 )( ii
gpµ  is tabulated in Table 3.4. This

rule-of-thumb seems to give us an estimate for the relative magnitude of C(T) when no

external dc magnetic field is present. Hence, the perpendicular component of C(T) in H-

modes may be neglected. Equation (3.15) provides the only good fit for (3.11) to the

frequency data in both Ti3+ and Ti4+-doped resonators (figs 3.8a & 3.8b). Curve fitting

of (3.11) with the parallel term of (3.13) was applied to the H-mode data.
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It was found, at helium temperatures, it was only necessary to use a two energy level

model of spin states of Ti3+ ions in sapphire, to get a good fit, but over the temperature

range, 4.2 to 80 K and above, the three energy level model was necessary.

This resulted in a fit so good it is difficult to distinguish it from the experimental data

points. Figs 3.14a and 3.15a show the curve fits up to 35 K where the lattice term fits a

T4 power law.  Above 35 K a polynomial was determined by fitting to the data from the

“undoped” crystal and the result was essentially equivalent. In order to extract more

precise information from the data, only data below 35 K, where there was high

confidence in the applicability of (3.11), was used

After the initial fit to the H-mode data, which generated Van Vleck coefficients (αn) for

the TIP susceptibility parallel to the crystal axis, the full form of equation (3.13) was

applied. By curve fitting to the E-mode data Van Vleck coefficients for the TIP

susceptibility perpendicular to the crystal-axis were determined. As temperature tends to

absolute zero i'χ  in equation (3.15) tends to a constant and by algebraic re-arrangement

may be written as

∑ −
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δδ αααα
αχ                  (3.17)

Therefore from the frequency data, χ’i can only be resolved to within an unknown

constant )( 0
iNα . The coefficients of the exponential terms in equation (3.17) and the

ZFS energy of the excited states (�1, �2), were determined for the H9,1,δ  mode in the

three resonators and are listed in Table 3.5. The ratio �n/k (expressed in kelvin) where n

= 1 & 2, was determined to be 53 ± 3 K and 155 ± 3 K respectively.

The excellent agreement with published data (54.4 K, 154.0 K (Byvik and Buoncristiani

1985) and 54.7 K, 156.9 K (Gachter and Koningstein 1974)) strongly suggests that the

frequency-temperature compensation observed in the Ti4+-doped sapphire was caused

by the paramagnetic effect of residual Ti3+ ions and not Ti4+ ions. It was thought that

TiO2 might sit in the lattice in pockets as in (McClure 1962). This might produce a

dielectric compensating effect. A comparison of the coefficients )( ||
1

||
0 αα −N and
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)( ||
2

||
0 αα −N from the H-mode data (Table 3.5) indicates that there was about 40 ppm

Ti3+ ions in the Ti4+-doped resonator and 8 ppm in the “undoped” sample. For

descriptive purposes we’ll continue to use the “Ti4+-doped” label for the 40 ppm Ti3+-

doped resonator as it distinguishes it from the 1000 ppm Ti3+-doped resonator.
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Figure 3.15a: Fractional frequency offset as a function of temperature for the E12,1,δ  mode in the Ti4+-
doped sapphire. The experimental data lay over the curve fit.
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Figure 3.15b: Enlargement of the low
temperature region of fig. 3.15a

Figure 3.15c: Enlargement of the low
temperature region of fig. 3.15a after Mo3+ ions
have been added to the curve fit.

TABLE 3.5: DIFFERENCES OF VAN VLECK COEFFICIENTS FROM FREQUENCY-TEMPERATURE

DATA OF THE H9,1,δ  AND THE E12,1,δ  MODES IN THE THREE RESONATORS MEASURED.
RESONATOR Axis

i
)( 10

iiN αα − N*
[ppm]

)( 20
iiN αα − N*

[ppm] )(

)(

20

10

αα
αα

−
−

Ti3+-doped || 2.96 × 10-3 1000 4.32 × 10-3 1000 0.69
Ti4+-doped || 1.15 × 10-4 39 1.88 × 10-4 43 0.61
“undoped” || 2.35 × 10-5 8
Ti3+-doped ⊥ 6.86 × 10-5 1000 1 × 10-4 1000 0.69
Ti4+-doped ⊥ 7.05 × 10-6 100 4 × 10-6 40 1.76

*calculated by a comparison with the Ti3+-doped resonator, which had a nominal 1000 ppm Ti3+ ion
concentration.
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Figure 3.16: Turning point temperature (TTP) as a function of Ti3+ ion concentration (N). The
“calculated” curve is the result of applying (3.17) to (3.12) for various N. The measured data are the
open squares with a power law fit.

After omitting ||
0αN , equation (3.17) was used to plot the resonance frequency turning

point temperature (TTP) for the H-mode as a function of Ti3+ ion concentration (N) (fig.

3.16). The experimental data are shown as squares. It is apparent that for very low

concentrations there is a cut off point where the Ti3+ ion alone produces no turning

point. Above that concentration there are two values of TTP. At high concentrations, the

higher temperature values of TTP were found to be proportional to the fourth root of the

concentration of Ti3+ ions or

4 NTTP ∝                                                   (3.18)

A large change in concentration gives only a small shift in turning point temperature,

which is an advantage if trying to design a specific turning point temperature.  Accurate

comparison of the Polish and CS samples was not possible because of a lack of data at

high and low temperatures for the Polish resonator as well as differences in measured

modes. However the Ti3+ ion concentration in the Polish resonator could still be

estimated to be between 200 ~ 300 ppm.

From the Table 3.5, the ratio of the coefficient )( ||
1

||
0 αα −N  from the Ti3+-doped

resonator to that from the Ti4+-doped resonator is approximately equal to 25 and
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identical to the corresponding ratio of the coefficient )( ||
2

||
0 αα −N . This suggests the

turning point behavior is essentially due to Ti3+ ions. However, the perpendicular (⊥)

component coefficients )( 10
⊥⊥ −ααN indicate that there is some discrepancy particularly

at low temperatures. The predicted value of concentration (N) in the Ti4+-doped

resonator from a comparison of the coefficient )( 10
⊥⊥ −ααN for the E-mode in the two

doped resonators is 100 ppm. This is inconsistent with the H-mode comparisons and

also with a comparison of )( 20
⊥⊥ −ααN  in the E-modes.

By adding 1000 ppm of Ti3+ or Ti4+ ions to the resonators, the lattice has been modified.

This resulted in an additional dielectric term in L(T), with a large component parallel to

the crystal axis, due to either Ti3+ or Ti4+ ions or both. The most probable explanation is

that, in the Ti4+-doped resonator, TiO2 clusters do exist and only affect the electric field

parallel to the crystal axis, producing a compensating frequency shift.

Closer examination of figs 3.14a and 3.15a, at low temperatures (< 10 K), (enlarged in

figs 3.14b and 3.15b) reveals a deviation of the measured data from the fitted curve. For

the E-mode in the Ti4+-doped sample it is apparent that Ti3+ ion alone produced no

turning point (fig. 3.15b). This strongly suggests the presence of another paramagnetic

species. Since the resonators were manufactured using molybdenum crucibles, a TIP

Van Vleck component for Mo3+ ions (Table 3.6) was included. This significantly

improved the fits as shown in figs 3.14c and 3.15c.

TABLE 3.6: DIFFERENCES OF VAN VLECK COEFFICIENTS FOR THE MO3+ ION FROM CURVE FITTING TO

FREQUENCY-TEMPERATURE DATA OF THE H9,1,δ  AND THE E12,1,δ   MODES AT LOW TEMPERATURES.
Resonator Axis N (α0-α1) N*
Ti3+-doped || 6.78 × 10-7 6
Ti4+-doped || 8.66 × 10-7 8
Ti3+-doped ⊥ 1.65 × 10-6

Ti4+-doped ⊥ 5.60 × 10-7

*The Mo3+ ion concentration (N) was calculated by a comparison with (Luiten 1995).

According to my model, the Mo3+ ion term is similar to (3.17) but with only one energy

level (�1/k = 8 K) above the ground state. The ground state g-factors for the Mo3+ ion in

sapphire are 0
⊥g = 4 and 0

||g = 2. Based on the previous rule-of-thumb, (3.16), the

relative magnitude of fractional frequency shifts from paramagnetic susceptibility of the

Mo3+ ion, were calculated and are shown in Table 3.4.  Hence, the parallel component
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of C(T) in E-modes and the perpendicular component of C(T) in H-modes may be

neglected. The overall shifts due to Mo3+ ions should be about 4 times greater in E-

modes than in H-modes, which is consistent with the data from both resonators. Also

the estimated Mo3+ ion concentrations are of the same order as that estimated for Ti3+

ion in the “undoped” sapphire, also an impurity from the manufacturing process.

3.2.4 TiO2 Dielectric Compensation
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Figure 3.17: Fractional frequency of the E12,1,� mode in the Ti4+-doped resonator due to dielectric  and
paramagnetic effects. Curve 1 is the measured fractional frequency of the E-mode in the Ti4+-doped
resonator. Curve 2 is the sapphire lattice term plus the effect of the TiO2 dielectric only. Curve 3 is the
sapphire lattice term plus the effect of the Ti3+ ions only. Curve 4 is due to the pure sapphire lattice only.

In order evaluate the effect on the E-mode of an additional dielectric material (TiO2) in

the Ti4+-doped resonator, the coefficients in (3.17) were chosen from the Ti3+-doped

resonator E-mode data, only scaled by the relative concentration. The difference not

accounted for by the paramagnetic species were than assumed to be the result of TiO2

clusters, which act as a dielectric compensating term (see fig. 3.17). Curve 1 is the

measured fractional frequency of the E-mode in the Ti4+-doped resonator. Curve 2 is the

sapphire lattice term plus the effect of the TiO2 dielectric only. Curve 3 is the sapphire

lattice term plus the effect of the Ti3+ ions only. Curve 4 is due to the pure sapphire

lattice only. The additional dielectric effect on the sapphire lattice is small and

insufficient to create a turning point by itself (curve 2), but it moves the Mo3+ induced

turning point up 2 degrees (compare curves 3 and 1). The H-mode data indicates that the

TiO2 has no effect on the E-field component in the direction perpendicular to the
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crystal-axis. And because the parallel electric filling factor is very small, the effect on

H-modes can be neglected.

3.2.5 Mode Curvature

By taking the second temperature derivative of the curves in figs 3.8a and 3.8b, the

mode curvature (ζ) at the turning point (TTP) was calculated according to,

 

TPTT

f

f 2

21

∂
∂=ζ .                                                  (3.19)
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Figure 3.18: Mode curvature verses turning point temperature. �: Ti3+-doped CS sample. �: Ti4+-doped
CS sample. �: Ti3+-doped Polish sample. �: Russian sapphire with residual Ti3+ ions. �: High purity
sapphire that achieved compensation by a combination of residual Ti3+ and Mo3+ paramagnetic ions at
~1 ppm concentration (Luiten 1995).

Mode curvatures (ζ) were also calculated for a variety of modes in all resonators. The

data are both plotted as a function of turning-point temperature (TTP) and shown in fig.

3.18. Above 60 K, the increasing trend in mode curvature appears to flatten out. This is

indicative that at high temperatures χ’i in (3.15) tends to a constant and thus the

compensation effect on the temperature dependence of the lattice becomes shallower.

Around 10 K in the Ti4+-doped resonator there is a small deviation from the power law

dependence, which is due to the combined effect of the TiO2 and the Mo3+ ions.
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Without these, the Ti3+ ion would not be sufficient to compensate the lattice term in this

E-mode.

These data are compared with the mode curvature of 3 × 10-10/K2 at the turning point, in

an ultra high purity sapphire resonator operating at 6 K (Luiten 1995). It is worth noting

here, that in this ultra high purity sapphire resonator, E-modes had the highest TTP due

to the presence of Mo3+ ions, which couple more strongly to transverse magnetic fields.

If Ti3+ ions were the only impurity, there would have been no turning points at the

estimated ~1ppm concentration. Whereas in the two intentionally doped resonators, the

Ti3+ ions dominate the frequency-temperature dependence and any Mo3+ ions only

significantly affect the E-modes.

The lower the curvature (ζ) the better the fractional frequency stability. From fig. 3.18,

it follows that there is a strong trend of decreasing expected stability with increasing

turning point temperature (TTP). So the addition of higher concentrations of Ti3+ ions

produces higher turning point temperatures at the expense of a reduction in fractional

frequency stability in a loop oscillator based on this resonator.

3.3 Quality Factors

3.3.1 Experimental Results

At 50 K in the Ti3+-doped CS sample the Q-factor was highest in E-modes at 4 × 106,

whereas in the H-modes it was about 5 × 105. On cooling to 15 K the Q-factor rapidly

increased and at 4.2 K reached 8 × 108 in the E12,1,δ  (17.73 GHz) mode. In H modes it

increased also but to no more than 7 × 107 in the H9,1,δ  (16.63 GHz) mode. At 50 K, the

highest Q-factor in the Ti4+-doped CS sample was 1.6 × 107 in the E12,1,δ mode, which

reached 2 × 108 at 4.2 K.  The highest Q-factors in the H modes were about 5 × 106 at

50 K, rising to a little more than 8 × 107 at 4.2 K.

Pure sapphire has been measured to have Q-factors of 4 × 109 at 4.2 K (Luiten et al.

1993) and 6 × 107 at 77 K (Woode et al. 1996). Thus it is apparent that a trade off for a

higher temperature compensation point is an increase in the losses. In the Ti3+-doped

sapphire at 4.2 K, the Q-factor approaches that of pure sapphire. However in the Ti4+-
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doped sapphire there may be some additional losses due to the Ti4+ ions preventing this

even at very low temperatures.
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Figure 3.19: Log(Q0) at turning point temperature (TTP) for the same modes in the doped CS resonators
joined by a theoretical linear fit. For each pair of data, the higher temperature points are from the Ti3+-
doped sapphire, while the lower temperature points are from the Ti4+-doped sapphire.

The unloaded quality factor for a sapphire resonator doped with paramagnetic ions is

dependent on a combination of both dielectric and paramagnetic losses, neglecting any

cavity wall losses, for sufficiently high azimuthal mode numbered modes. It was

observed, at about 4.2 K, in the Ti3+-doped sapphire the dielectric losses become

significant as the paramagnetic losses switch off. At higher temperatures the

paramagnetic losses are dominant and thus the dielectric losses can be neglected. From

(Braginsky et al. 1985)

      N
Qmag

∝∝= '"
1

χχ                                                (3.20)

where χ 	  is the imaginary part of the susceptibility and Qmag  is  the Q-factor due to the

inclusion of paramagnetic ions in the lattice. Neglecting dielectric losses for

temperatures above 10 K and combining (3.18) and (3.20), for the measured unloaded

Q-factor:

     
4

0

1
TPT

Q
∝  .                                                (3.21)
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Experimental values of log(Q0) verses TTP for the E and H-mode and an additional

mode, S111 or  E11,1,1+δ (17.04 GHz) are shown in fig. 3.19. The latter mode is hybrid,

and contains a small H-like component. The straight lines joining the data are

theoretical interpolations from (3.21).

3.3.2 Relaxation Processes

As mentioned above, the Q-factor of a mode of resonance is dependent on the various

loss processes involved. For the magnetic dipoles on the Ti3+ ions (spins) the energy

loss mechanism must be considered. Spins may lose energy through both spin-spin and

spin-lattice relaxation mechanisms. The former is the result of a de-phasing of the

alignment of the spins, whereas the latter results from the magnetic dipole interacting

with the lattice electric field. Three phonon processes that allow energy exchange of the

spins with the lattice are illustrated in fig. 3.20: Direct, Orbach and Raman (Finn et al.

1961; Orton 1968).

�
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3

1

3

2

h�1 h�2

Direct Orbach Raman
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Figure 3.20: Direct, Orbach and Raman phonon relaxation mechanisms:
The Direct process involves the resonant release of a phonon to the lattice, at the transition frequency, as

the ion falls into the ground state. The relaxation rate, 1/τ � coth(hν/2kT) which tends to 1/τ � T
at high temperatures.

The Orbach process involves the resonant absorption of one phonon with energy � and the resonant
release of another phonon.  The first elevates the ion to level 3 from 2 and the second causes it to
de-excite to 1. It is driven by the stimulating phonon. The energy difference � >> � and 1/τ �
exp(-�/kT).

The Raman process in a multi-level ion involves a virtual level (dashed lines) that doesn’t coincide with
the upper ionic level 3. It is a non-resonant scattering process as it mainly depends on the
availability of the phonons in the lattice such that the difference in the phonon energies (h�2 -
h�1) is equal to the energy difference of levels 1 and 2. For Kramers’ doublets, 1/τ � T9 at low
temperatures and T2 at high temperatures.
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Figure 3.21: Proposed Orbach relaxation mechanism. Kramers’ doublets are split by the alternating
magnetic field.  The energy levels reverse every half cycle.

In the Ti3+-doped sapphire, I suggest that an Orbach process allowed the spin system to

exchange energy with the lattice via the first excited state. For the Ti3+ ion in sapphire,

the ZFS energy expressed in kelvin (�1/k) is approximately 54 K. Within each cycle of

the microwave field, the Kramers’ doublets are split by the applied alternating magnetic

field. It is estimated the splitting < 0.5 K at X-band frequencies (Kask et al. 1964). The

ground state ion absorbs a phonon from the lattice elevating it to the higher state, then it

spontaneously decays releasing a phonon to the lattice (see fig. 3.21). The ground state

(E0) and the first excited state (E1) are split by different amounts in the variable

microwave magnetic field, because the ground state spin quantum numbers are ±3/2

whereas for the first excited state they are ±1/2. Because of this fact, the resulting

energy difference (�) provides a means by which energy can be released to the lattice

and hence the bath. And the energy of the stimulating phonon, � is approximately equal

to the ZFS energy, �1.

Provided that the bath has sufficient thermal coupling to the crystal lattice and hence the

phonon system, so that a “phonon bottleneck” doesn’t build up saturating the population

of emitted ‘hot’ phonons, the loss process is driven by the stimulating phonon. In a

“phonon bottleneck” scenario the losses are determined by the coupling between the

phonon system and the bath. Whereas the former process is characterised by a

relaxation time (�), determined by the stimulating phonon (see fig. 3.21), which is

proportional to exp(�/kT). The ‘hot’ phonons may be ‘cooled’ by two processes; direct

coupling into the bath on reaching the crystal boundary or by scattering into other

modes of different frequency out of our range. The spin-spin relaxation mechanism (�s-

s > 3 x 10-11 s (Nelson et al. 1967)) is independent of temperature (Bleaney and Stevens
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1953) and will be considered later. The more dominant spin-lattice relaxation

mechanisms are strongly temperature dependent and will be considered here. As the

temperature is reduced, the population of available phonons of the required energy

decreases according to the phonon occupation number, 1)1(exp −−
kT
hν , which falls to

zero at absolute zero. This determines how energy is coupled out to the lattice in

proportion to the number of scattering phonons.

Now, the imaginary part of the susceptibility (�”) is equal to the loss due to the

paramagnetic ions (Braginsky et al. 1985) in a microwave field and may be written

( )
22'
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where ∆fL is the electron spin resonance (ESR) line width, f, the microwave pump

frequency and fL, the ESR line frequency.

The microwave signal coupling through the lattice electric field (and spin dipoles of

magnetic ions) drives all the ions in the lattice into excited states, which relax via one or

more phonon processes delivering thermal energy to the lattice and in turn to the bath.

When tuned close to an ESR line, a photon can directly excite a paramagnetic ion into a

higher energy state. When the driving microwave frequency (f) is much less than the

spin resonance frequency (fL), the ions can only be elevated thermally into excited states

by scattering phonons. For the Ti3+ ion in sapphire, the ESR line frequency is 1134 GHz

for the first excited state.

If I define a new variable 1/� = ∆fL in (3.22), where 1/� is the combined relaxation rate

of the most rapid phonon spin-lattice energy-exchange processes, it may be expressed as

...
111

21

++=
τττ

                                                    (3.23)

where 1/�1 and 1/�2  are the individual relaxation rates, of either Direct, Orbach or

Raman phonon processes.
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The principle coupling mechanism, studied by Van Vleck (Vleck 1940), states that as

the energy of an isolated ion depends considerably on the crystalline electric field, spin-

lattice coupling may occur when the crystal field is modulated through lattice

vibrations. This mechanism applies strictly to a single ion and excludes any spin-spin

interactions, therefore there can be no relaxation rate dependence on magnetic ion

concentration. The relaxation rate of various phonon processes does however involve

dependencies on phonon frequency (�) and density.

The measured unloaded Q-factor (Q0) is the sum of the magnetic component and a

dielectric term (Qdiel), resulting from the sapphire lattice doped with titanium ions. Thus

for any high order WG mode (3.1) combined with (3.22) becomes

( )
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where ⊥⊥
+= δδ εε tantan1 ||||

ppQdiel (Krupka 1991). Here tan�i is the loss tangent for

the modified crystal with i = ⊥ or ||, representing the axes perpendicular and parallel to

the crystal axis.
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Figure 3.22: 1/Q0 in the E12,1,δ  mode in both doped resonators compared with 1/Q0 in an E-mode in pure
sapphire (curve 3) scaled by frequency. Above 100 K, in both resonators 1/Q0 is proportional to T3

whereas in the pure sapphire it is proportional to T5. At 4 K, in the Ti3+-doped resonator (curve 1), 1/Q0

reached a minimum at about 3 � 10-9 but in the Ti4+-doped resonator (curve 2) it tended to a constant
about 6 � 10-9.
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The measured 1/Q0 in the E-mode in the Ti3+-doped resonator (curve 1 in fig. 3.22), at

low temperatures reached a minimum and then started to increase again (below 5 K).

This may be the result of losses due to contamination or wall effects. In the Ti4+-doped

resonator, 1/Q0 (curve 2 in fig. 3.22) reached a minimum but not as low as the former,

which could have been due to the different impurity ion or surface contamination of the

sample. Above 100 K, the temperature dependence of 1/Q0 approached that of the pure

sapphire in both samples. Between 10 and 100 K, in the Ti3+-doped resonator, a

paramagnetic loss hump dominated, peaking around 25 K. In the Ti4+-doped resonator

there was only a small loss hump. Below 80 K, lattice losses were a little less than an

order of magnitude greater than the losses in pure sapphire (curve 3 in fig. 3.22).

Initially, (3.24) was curve fitted to the E-mode data from the Ti3+-doped resonator

(curve 1 in fig. 3.23) between 5 and 70 K with 1/Qdiel set to zero. From this, the values

of ⊥
0αN  and 1/τ were determined absolutely. Best fits to the data was with two Orbach

processes, with �/k = 27 ± 1 K and 54 ± 1 K. In 1964 (Kask et al. 1964) measured �/k =

43 ± 3 K in Ti3+-doped sapphire; from my model, I would expect it to be close to the

ZFS energy of 54 K. The 27 K level may be the result of another low lying energy level

within Al3+Ti3+O9
2- clusters (Zha et al. 1994). From this analysis a combined relaxation

rate was determined with

TT ee
54

2

27

1

1 −−
+= ρρ

τ
                                                 (3.25)

with �1 = 1.35 	 1012 Hz, �2 = 1 	 1012 Hz.

Since the relaxation rate in not dependent on paramagnetic ion concentration, using

these values for �1 and �2, (3.24) was curve fitted to the E-mode in the Ti4+-doped

resonator (curve 2 in fig. 3.24), scaled by the relative Ti3+ ion concentration. 1/Qdiel for

the E-mode in the Ti4+-doped resonator (curve 1 in fig. 3.25) was extracted. This

method was also applied to the H-mode in the Ti4+-doped resonator (curve 1 in fig.

3.24), determining 1/Qdiel for this mode (curve 2 in fig. 3.25). From this ||
0αN  was

uniquely determined. Therefore ⊥
0α  = 0.2 and ||

0α = 1.25. At low temperatures and above

80 K, 1/Qdiel for the E mode in the Ti3+-doped resonator was also determined (curve 3 in

fig. 3.25).
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Figure 3.23: 1/Q0 (data) in the E12,1,δ  mode (curve 1) and in the H9,1,δ  mode (curve 2) in the Ti3+-doped
resonator with “curve fits” based on the paramagnetic (second) term only from (3.24). The difference
between the “data” and “curve fit 1” is 1/Qdiel contribution shown in fig. 3.25. In the case of curve 2,
1/Qdiel could not be calculated because of a “phonon bottleneck” effect.
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Figure 3.24: 1/Q0 (data) in the E12,1,δ  mode (curve 2) and in the H9,1,δ  mode (curve 1) in the Ti4+-doped
resonator with “curve fits” based on the paramagnetic (second) term only from (3.24). The difference
between the “data” and “curve fit 1 and 2” is 1/Qdiel contribution shown in fig. 3.25.
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Figure 3.25: Dielectric or lattice losses (1/Qdiel) parallel to the crystal axis (from E-modes) in both
resonators and perpendicular to the crystal axis (from the H-mode) in the Ti4+-doped resonator. It was
not possible to determine the perpendicular losses in the Ti3+-doped resonator because of the dominance
of paramagnetic losses over the whole temperature range of measurement.

The inclusion of 1000 ppm Ti3+ or Ti4+ ions in the two sapphire samples has resulted in

approximately the same Qdiel for E-modes. This is quite reasonable in light of the fact

that the titanium ions of either species replaced the Al3+ ions in the sapphire lattice.

When (3.24) was applied to the H-mode losses in the Ti3+-doped resonator (curve 2 of

fig. 3.23) the measured data fell below the modeled curve (curve fit 2). It is suggested

that this is the result of “phonon bottleneck” due to the much higher volume of affected

spins. This resulted in lower losses below 80 K than would normally be expected. From

inspection of fig. 3.26, above 100 K, the losses compared to pure sapphire were

significantly more in the H-mode in the Ti3+-doped resonator than in the Ti4+-doped

resonator. This indicates an additional loss mechanism, which didn’t appear to influence

the H-mode in the Ti4+-doped resonator because '
||χ  is 25 times smaller and the lattice

losses dominated. I suggest this additional loss mechanism was a Raman scattering

process, which tend to dominate at higher temperatures because of the increased mode

density of phonons.

The relaxation rate (1/�) of the Orbach spin-lattice loss process has been determined

with a characteristic relaxation time � ∼ 10-9 s at 4.2 K.  �  drops exponentially to 5 	

10-13 s at 200 K. Assuming that the spin-spin loss process is the limiting mechanism at
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very low temperatures, using (3.24) and the experimentally determined values of ⊥
0α

and ||
0α  yields a spin-spin relaxation time, �s-s > 10-9 s. This figure is greater than, but

consistent, with Nelson’s �s-s > 3 × 10-11 s. Therefore spin-spin relaxation doesn’t appear

to be the limiting loss mechanism, but contamination, in fact, may be at the lowest

temperatures measured.
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Figure 3.26: 1/Q0 in the H9,1,δ  mode in both doped resonators compared with 1/Q0 in an H-mode in pure
sapphire (curve 3) scaled by frequency. Above 100 K, in the Ti4+-doped resonator (curve 2), 1/Q0 was
proportional to T3 whereas in the Ti3+-doped resonator (curve 1) it was proportional to T2.3. In the pure
sapphire it was proportional to T5. At 4 K, in both, 1/Q0  tended to a constant about 10-8.

The Q-factor at the TTP for the H-mode was calculated, from our model, as a function of

Ti3+ ion concentration (N).  Only the pure sapphire lattice losses (curve 3 of fig. 3.26)

and the Orbach losses for Ti3+ ions were included (fig. 3.27). At 1000 ppm

concentration, there is 1.5 orders of magnitude difference between the modeled and the

measured Q-factor. This can be attributed to Raman scattering at these higher

temperatures (Orton 1968) and for which there is little likelihood of phonon bottleneck

occurring. At 40 ppm concentration, the measured Q-factor is about half the modeled

value. This is due to the increased dielectric loss introduced by the inclusion of 1000

ppm titanium ions.

Data up to 14 K, taken from a 50-mm diameter pure sapphire resonator (Luiten 1995)

was analyzed for the effect of the losses due to the Ti3+ and Mo3+ ions.  Using the

published estimated concentrations for these ions, Q-factors were calculated for each

contribution. The results are shown in fig 3.28. Curve 1 is the resulting lattice Q-factor
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after the losses associated with 1 ppm Ti3+ ions and 0.3 ppm Mo3+ ions were extracted

from the measured Q-factor (curve 2). Curve 3 and 4 are the Q-factors associated with

the Ti3+ and Mo3+ ions, respectively. The contribution from the Mo3+ ions is based on an

upper limit for the associated losses in both Ti3+ and Ti4+-doped resonators, as the Van

Vleck parameters ⊥
0α  and ||

0α  for the Mo3+ ions could not be determined from our data.
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Figure 3.27: Predicted Q-factor of the H9,1,δ  mode (solid line) at the frequency-temperature turning point
(TTP) based on Orbach paramagnetic losses. This is compared with experimental data (solid circles). .
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in fig 3.18 (TTP = 6 K) supplied by A. Luiten (Luiten 1995). Curve 1 is the resulting lattice Q-factor after
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Factors contributing to the resulting lattice Q-factor, include crystal defect density,

crystal surface contamination (including trapped oxygen), surface resistance of the

cavity walls and cavity geometry. The defect density depends on the growth rate, which

for commercial expediency is not as slow as we would desire, leaving a considerable

defect density. This cannot be seen under polarised light, as the wave front is not

affected (Schmid et al. 1996). Since curve 1 (in fig. 3.28) is practically flat from 2 to 14

K (allowing for errors from the subtraction of small numbers), defect density and

surface contamination may be the major loss contributors.

3.4 Future Work

Using (3.15) with the measured Van Vleck coefficients and a hypothetical paramagnetic

impurity ion with a ZFS/k ratio of 105 K, a high order whispering gallery H-mode in

sapphire would have a turning point of 53.5 K with 200 ppm of the dopant (fig. 3.29).

Based on this analysis a curvature of 1 × 10-7 is predicted. This is in good agreement

with fig. 3.18, considering the Van Vleck coefficients are unknown I’ve used those for

the Ti3+ ion in sapphire.

Assuming a loss process dominated by a single Orbach mechanism with ∆/k = 105 K

and the parameter ρ ~ 1012, the expected Q-factor, around 53 K, due to the paramagnetic

ions would be about 4 × 107 for a mode frequency of 12 GHz. Fig. 3.30 shows the

expected Q-factor due to paramagnetic losses from the hypothetical ion (curve 1)

compared with that measured for pure sapphire in a H14,1,δ mode (curve 2). The resulting

Q-factor (curve 3) is from adding the dielectric and paramagnetic losses.

Many assumptions are made here and the only way to make any true prediction would

be to find and measure the properties of the hypothetical impurity in sapphire. This

approach offers the advantage of a monolithic resonator that is not as much affected by

mechanical instabilities as the composite dielectric structures. Further research needs to

be done in this area, but it is beyond the scope of this thesis.
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In this chapter, I present the results of my investigations into annulling the TCP of

dielectric resonators using only dielectric materials, not depending on paramagnetic

effects. In some cases, it involved the use of a cylindrical sapphire monocrystal with

another single crystal dielectric material placed on either or both end surfaces. In

another case, compensation was achieved by the natural temperature turning point of

one of the anisotropic permittivity components in quartz, resulting from a change in sign

of the corresponding thermal expansion coefficient.

4.1 Strontium Titanate-Sapphire Resonator

4.1.1 Introduction

Previously, a strontium titanate-sapphire resonator was constructed by placing a 1 mm

thick disk of single crystal strontium titanate (SrTiO3) (30 mm diameter) on a

cylindrically cut piece of (d = 31.58 ± 0.01 mm, L = 30.01 ± 0.01 mm) mono-crystalline

sapphire (Tobar et al. 1996) (see fig. 4.1). The sapphire was supported by sapphire

spindles (7.5 mm diameter) in a copper cavity (internal dimensions: 50 mm diameter

and 50 mm high).

Whispering gallery modes were excited with a stable microwave source, but the

strontium titanate introduced a high density of spurious modes, which interacted with

the mode of interest in the sapphire. Over a 200 K degree range an H8,1,δ  (12.0 GHz)

mode exhibited frequency-temperature turning points, but many mode interactions. Also

the Q-factor of the sapphire was severely degraded. A turning point at 108 K was
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reported with a Q value of 2 × 104. This is about three orders of magnitude lower than

what is expected for a rutile/sapphire resonator, calculated from (1.11) and the known

values of loss tangent for these crystalline materials.

sapphire

perturbation
dielectric

SrTiO3

Figure 4.1: Sapphire cylinder with a SrTiO3  perturbation dielectric disk placed on top.

4.1.2 Single Thin Disk

In order to investigate whether strontium titanate could be reasonably used as a

perturbation dielectric material, I had the CSIRO (in Sydney) grind down the thickness

to 0.2 mm and polish this same SrTiO3 disk but little improvement was observed. At

room temperature, the Q-factor of the pure sapphire E12,1,δ (14 GHz) mode was degraded

from 1.85 × 105 to 5.3 × 104 when the 0.2 mm thick annular disk was placed on the top

surface. It further decreased to 3.3 x 104 at 77 K in the same mode. Below 77 K, the Q-

factor was seen to degrade with temperature. Many mode interactions were observed as

the resonator was cooled down to 4.2 K. Obviously, due to the very high value of the

permittivity (of order of a thousand), even at the reduced thickness, the strontium

titanate still introduced a high density of spurious modes.

4.1.3 Thin Films

At Linköping University, Linköping, Sweden, a thin film of strontium titanate was

deposited onto one radial surface of 9 different Russian grown sapphire cylinders (d =

20 mm, L = 10 mm). I placed these in a copper cavity and measured the frequency and

Q-factor of various WG modes. The Q-factor of the pure sapphire was considerably
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degraded depending on the amount of SrTiO3 present. Table 4.1 shows the values for

the E6,1,δ (13.1 GHz) pure sapphire mode at room temperature together with those where

various amounts of SrTiO3 have been removed from the surface.

TABLE 4.1: AT ROOM TEMPERATURE, Q-FACTORS FOR THE E6,1,δ MODE IN VARIOUS (d = 20 mm, L =
10 mm) SAPPHIRE RESONATORS WITH A TOP SURFACE FILM OF SrTiO3 WHERE SOME HAS BEEN

REMOVED. ALL SAMPLES WERE SIMILAR MATERIAL OF THE SAME DIMENSIONS AND CRYSTAL

ORIENTATION.
Q-factor %Covered comments
103,000 0 un-coated
94,000 62 inner annulus
46,000 65 outer annulus
39,000 80 inner annulus
35,000 100 totally covered

The presence of the strontium titanate (a ferroelectric material) seems to strongly

increase the dielectric losses, even at room temperature. On cooling from 300 to 77 K

no frequency annulment was observed in the sample that had 62% coverage of SrTiO3,

but the Q-factor dropped from 9.4 × 104 to 5.5 × 104. Considerable mode interactions

were observed. As a perturbation dielectric, strontium titanate doesn’t seem so suitable,

but it may be a viable proposition if the quality of the film was improved to a near

crystal like state and the thickness kept to a few microns. However, this may not be

technically possible.

4.2 Quartz Resonator

4.2.1 Introduction

Vitreous Silica and various silicate glasses have turning points in their thermal

expansion coefficient, between 10 K and 140 K (White 1993). In quartz, the thermal

expansion coefficient has been measured (White 1964) showing a turning point in the

coefficient parallel to the crystal axis at about 8 K. Also it has been shown that 
T

f

f ∂
∂1

in

a WG quartz resonator is 2-times smaller at 77 K and 3-times smaller at 300 K than in

sapphire. Therefore, it was decided to investigate the behaviour of single crystal quartz

over the range of 4.2 K to room temperature. As shown in (3.6), in sapphire the thermal

expansion contributes between 4.5 - 6.5 % of the total frequency shift due to thermal

effects. The permittivity induced frequency shifts were dominant. However, in quartz,

this was found not to be the case. A compensation effect occurs in the frequency-
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temperature dependence due to a turning point in the “dielectric” contribution to the

frequency shift. Also the thermal expansion has a sign change at 12 K in the coefficient

perpendicular to the crystal axis (fig 4.2b), but the volume expansion coefficient

remains constant.

4.2.2 Experimental Results

A single quartz crystal was supplied through collaboration with the University of

Warsaw. The dimensions were d = 49.88 ± 0.01 mm and L = 32.23 ± 0.01 mm at 295 K.

The alignment of its cylinder axis with the crystal axis was better than 1°. The resonator

was initially measured on the bench (room temperature) without any shielding and data

for the three highest Q families is tabulated in Table 4.2. WG modes in the dielectric

were excited and examined at microwave frequencies in the range of 12 to 21 GHz, with

DBS microwave doublers placed after a HP 8673H synthesizer mixed with the signal

from a Marconi 2031. Coupling was kept low, so that the loaded Q-factor was

essentially equal to the unloaded.

A seed plane through the center of the quartz resonator was clearly visible, and proved

to affect the Q-factor of the fundamental Em,1,δ mode family. The measured Q-factors

for the Em,1,1+δ mode family were nearly 4 times that of the former. The latter has two

maxima in the electric field energy density along the crystal cylinder-axis and therefore

a node at the center of the crystal.

The resonator was placed in a copper structure without a radial shielding wall. Brass

posts were used to hold the loop probes connected to the coaxial transmission lines

conducting the microwave energy in and out of the resonator. This was placed in an

evacuated can with microwave absorber placed around the inner walls. The whole

apparatus was then cooled to 77 K with liquid nitrogen and then to 4.2 K with liquid

helium. It was allowed to warm up sufficiently slowly to keep the resonator in thermal

equilibrium. The temperature at the copper cavity was read out with a carbon glass. As

mentioned previously, a computerised method (Luiten et al. 1996a) was used to measure

the voltage at a diode detector as the frequency is sampled across resonance, from

which the central frequency and the Q-factor were determined.
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TABLE 4.2: MEASURED FREQUENCIES AND UNLOADED QUALITY FACTOR FOR THREE FAMILIES OF WG
MODES IN THE 50 mm BY 32 mm QUARTZ RESONATOR.

MODE Meas. Freq
[GHz]

Pred. Freq
[GHz]*

Unloaded
Q-factor

N111 E11,1,δ 12.8468 12.848 18,000
N112 E12,1,δ 13.8289 13.831 23,000
N113 E13,1,δ 14.8065 14.808 25,000
N114 E14,1,δ 15.7801 15.782 20,000
N115 E15,1,δ 16.7502 16.752 20,700
N116 E16,1,δ 17.7237 17.721 20,500
N117 E17,1,δ 18.6688 18.684
N118 E18,1,δ 19.646

S111 E11,1,1+δ 13.3700 13.362 31,000
S112 E12,1,1+δ 14.3215 14.314 50,000
S113 E13,1,1+δ 15.2715 15.264 59,000
S114 E14,1,1+δ 16.2202 16.213 70,000
S115 E15,1,1+δ 17.1679 17.161 76,000
S116 E16,1,1+δ 18.1151 18.108 68,000
S117 E17,1,1+δ 19.0607 19.054 56,000
S118 E18,1,1+δ 20.0055 19.999 53,000
S119 E19,1,1+δ 20.9492 55,000

S210 H10,1,δ 12.9168 12.913 17000
S211 H11,1,δ 13.9309 13.927 25000
S212 H12,1,δ 14.9373 14.933 25000
S213 H13,1,δ 15.9384 15.935 22000
S214 H14,1,δ 16.9354 16.931 22000
S215 H15,1,δ 17.9261 17.923 25000
S216 H16,1,δ

S217 H17,1,δ 19.9080 19.898
S218 H18,1,δ 20.881

*Predicted frequencies supplied by Prof. J. Krupka (University of Warsaw) calculated using Galerkin-
Rayleigh-Ritz and mode matching methods.

In the first cool downs, a very high spurious cavity mode density was observed. By

removing the radial shielding (cylinder wall) the offending cavity modes would radiate

and the WG modes in the quartz were more clearly resolved. Also, the background

voltage level at the diode detector, due to spurious mode feed through, was greatly

reduced allowing the software to more effectively track the mode of interest without

losing lock.

4.2.3 Thermal Expansion Effects

Assuming no paramagnetic impurities, (3.4) may be applied here. To get a fractional

frequency shift (3.4) must be integrated with respect to temperature. Using published



PART 1: TEMPERATURE COMPENSATED RESONATOR

102

data for *
dα  and *

Lα  (fig. 4.2) from (Touloukian 1970) and (White 1964), the

“dimensional” contribution to the fractional frequency shift of two WG modes was

determined.  The parameters pd and pL were calculated and are listed in Table 2.2.
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Figure 4.2a: Thermal expansion coefficients of quartz taken from (Touloukian 1970) and (White 1964).
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Figure 4.2b: Expanded scale of fig 4.2a. Data from (White 1964)

4.2.4 Permittivity Effects

The measured fractional frequency data for S115, an E-mode, showed no turning point

above 10 K (curve 1 in fig. 4.3) because the thermal expansion contribution was too
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strong. However, there was a small dip around 20 K, which is more clearly seen in

curve 1 of fig. 4.5. This low temperature data will be discussed further on. The

frequency shift due to the “dimensional” contribution is shown in curve 2 in fig. 4.3 and

by subtracting curve 2 from curve 1, the effect of the “dielectric” or permittivity

contribution (curve 3) was obtained. Over most of the temperature range shown the

“dimensional” contribution dominates.

Similarly, the measured fractional frequency data for S214, an H-mode, was analysed

and it did show a turning point at 34 K (curve 1 in fig 4.4) with a curvature (ζ) of 2.7 ×

10-7 /K2. The frequency shift due to the “dimensional” contribution is shown in curve 2

and the effect of the “dielectric” contribution in curve 3. Note the sign change at 150 K

in the “dielectric” contribution to the measured fractional frequency shift. However,

over the whole temperature range of the measurements, the “dielectric” contribution is

very small and the “dimensional” term dominates.
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Figure 4.3: Fractional frequency offset for the S115 (E15,1,δ) mode (curve 1), the frequency shift due to
thermal expansion (curve 2) and the frequency shift due to the dielectric (curve 3). The open circles
(curve 1) are some of the data points while the dashed line is a polynomial fit.

Below 10 K, both modes studied show additional turning points in their frequency-

temperature dependence (fig 4.5). This, I believe, is due primarily to the system not

quickly reaching thermal equilibrium. The vacuum can was cooled with liquid helium

and the transfer was stopped when the thermometer indicated 4.2 K, but the quartz

resonator, in fact, may have been still cooling when the carbon glass thermometer was

indicating it was warming. Also paramagnetic impurities may have contributed to this
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decrease in frequency, and mostly probably this is the case for the dips in the 20 K

regions for both modes.
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Figure 4.4: Fractional frequency offset for the S214 (H14,1,δ) mode (curve 1), the frequency shift due to
thermal expansion (curve 2) and the frequency shift due to the dielectric (curve 3). The solid circles
(curve 1) are some of the data points while the dashed line is a polynomial fit.
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Figure 4.5: Fractional frequency offset normalised to the mode frequency at 300 K for the S115 (E15,1,δ)
mode (curve 1) and the S214 (H14,1,δ) mode (curve 2).

By integrating curves 3 in both figs 4.3 and 4.4 and with known electric filling factors

(from Table 2.2) a system of two simultaneous equations results for each temperature

point. By solving these, the relative permittivity was obtained as a function of

temperature and is shown in fig 4.6. In fact, for WG modes the orthogonal component is

so small that it can be neglected and the value for ε|| (curve 1) can be derived from the
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E-mode data and ε⊥ (curve 2) from the H-mode. The dominant part of the relative

permittivity error is approximately double the relative error in the determination of the

diameter of the cylindrical resonator.
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Figure 4.6: Derived relative permittivity parallel (curve 1) and perpendicular (curve 2) and to the crystal
axis in the 49.88 mm x 32.23 mm quartz resonator. Curve fitting shown are best fits.
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Figure 4.7: The calculated value of the measured fractional frequency divided by the dimensional
contribution, up to 300 K. The data was taken from figs 4.3 and 4.4 for the E-mode (curve 1) and H-mode
(curve 2), respectively.

Following the same treatment as (3.4) to (3.6), the measured fractional frequency

divided by the dimensional contribution has been calculated for the quartz resonator and

shown in fig. 4.7.  Curve 1 is calculated from the E-mode and curve 2 from the H-mode.

Above 160 K, both curves become linear within experimental error. Using (3.6)
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Subtracting (4.1b) from (4.1a), neglecting any small T dependent term that is less than

experimental error, and differentiating, results in:

***

2

1
|| dααα εε ≅−

⊥
          for T > 160 K                                 (4.2)

4.2.5 Q-factors

The measured Q-factors for S115 (E-mode ) and S214 (H-mode) are plotted in fig. 4.8. On

cooling, the E-mode Q-factor rose from 7.6 × 104 at room temperature reaching a

plateau of 3.4 × 105 about 50 K (curve 1 in fig. 4.8). In the H-mode, the Q-factor rose

from 2 × 104 at room temperature, reached a maximum of 1.2 × 105 at 120 K, then

decreased until it reached a plateau of 8 × 104 about 50 K (curve 2 in fig. 4.8). One

obvious observation is that a turning point in the H-mode Q-factor occurs with the

turning point in the permittivity perpendicular to the c-axis. This is a trade-off between

the real and imaginary parts of the permittivity – compensation at the expense of a

lowered Q-factor.

The dielectric loss tangents (fig. 4.9) were determined by solving the following set of

simultaneous equations where the geometric factors (G(E), G(H)) were neglected due to

the high value of  the azimuthal mode number (m).
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Figure 4.8: Measure Q-factor in the 49.88 mm x 32.23 mm quartz resonator as a function of temperature.
Curve 1 is for the S115 mode and curve 2 is for the S214 mode.
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Figure 4.9: Dielectric loss tangent components perpendicular and parallel to the crystal axis for quartz
as a function of temperature. Curve 1 is tanδ|| and curve 2 is tanδ⊥.

With sufficient temperature control (say, 100 µK within 1 mK of the TP), the S214 mode

curvature at the TP (~ 34 K) would reduce the oscillator frequency instabilities, due to

temperature fluctuations, to about 2.7 × 10-14 at 1 s.  However, the Q-factor is at least 2

orders of magnitude too small. From the measured Q at the turning–point temperature,

the frequency discriminator noise would be the dominant noise source.
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4.3 Rutile-Sapphire Composite Resonators

4.3.1 Sapphire-Rutile Disk Structure

In this experiment, two dielectric materials were used to achieve dielectric

compensation (Tobar et al. 1998a). The main body of the resonator was a cylindrically

cut piece of high purity, low loss sapphire with the cylinder axis aligned with the crystal

axis. To this was added two cylindrically cut thin slices of monocrystalline rutile (TiO2),

which was purchased from Escete Single Crystal Technology, Nederlands. The rutile

disks (0.21 ± 0.01 mm thick with diameter 19.25 ± 0.1 mm), were clamped tightly

against the upper and lower surfaces of the sapphire cylinder (d = 24.89 ± 0.01 mm, L =

23.68 ± 0.01 mm high) and supported in a copper cavity with copper posts as shown in

fig 4.10. Though these rutile slices had holes in the centre to allow for the support

structure, they may be considered to be disks (and not rings as will be discussed later).

The reason for this is because there is very little electromagnetic energy in the centre of

the crystal and the presence or absence of rutile in this region has little effect. The

cavity was placed in an evacuated copper can and cooled to 77 K with liquid nitrogen,

and then by pumping on the cryogenic fluid 52 K was reached.

                            

���

rutile slices

����

copper cavity

spring
mechanism

loop probe

sapphire

Figure 4.10: Schematic of composite rutile/sapphire resonator in copper cavity. The sapphire used was
the Russian grown crystal (d = 24.89 ± 0.01mm, L = 23.68 ± 0.01 mm), that was used in chapter 3. The
rutile disks were single crystal (d =19.25 ± 0.1mm, L = 0.21 ± 0.01 mm).

Resonance frequencies and Q-factors of many modes were measured using a diode

detector and a stable frequency source as described previously. The data was hand
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measured on an oscilloscope using the full bandwidth at half power point method, as the

cavity was allowed to slowly warm.
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Figure 4.11: Frequency-temperature dependence for the S1m (Em,1,1+δ )  mode family with azimuthal
numbers, m, between 5 and 8.
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Figure 4.12: Frequency-temperature dependence for the S2m (Hm,1,δ)  mode family with azimuthal
numbers, m, between 5 and 10.

Compensation was achieved in different modes from 50 to 150 K, with Q-factor values

varying from 5 × 106 to 3 × 105. Whispering gallery E-modes had the lowest

temperature compensation points, while the H-modes had the highest. Each mode

family showed a definite relationship between turning point temperature (TTP) and the
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electric-energy filling factor.  The fundamental E-mode family (N1m or Em,1,δ) had

turning points below 52 K and could not be measured without liquid helium. However,

the S1m (Em,1,1+δ) mode family (fig. 4.11) had turning points between 50 and 90 K. In

the fundamental H-mode family S2m (Hm,1,δ), they were at about 150 K (fig 4.12).

The frequency-temperature characteristics of the resonator modes agree very well with

what was expected. See fig. 4.13. The mode curvature (ζ) at TTP for some modes as a

function of TTP is shown. It is quite apparent that there is a strong trend of increasing

curvature (and hence decreasing stability) with increasing TTP.

TABLE 4.3: ANISOTROPIC LOSS TANGENTS FOR SAPPHIRE AND RUTILE.
Loss Tangent Sapphire Rutile

tan δ||

290 K
77 K
4 K

5 × 10-6

2 × 10-8

7 × 10-10

1 × 10-4

1 × 10-5

5.4 × 10-8

tan δ⊥
290 K
77 K
4 K

8 × 10-6

5 × 10-8

9 × 10-10

8 × 10-5

4 × 10-6

2.6 × 10-8

Rutile’s large negative temperature coefficient of permittivity (fig. 1.4) and low loss

tangent makes it an ideal material for compensating the frequency-temperature

dependence of a high-Q sapphire resonator. Rutile has comparatively low loss (see

Table 4.3) and since it is used only to perturb the sapphire mode, from (1.11) it appears

that its loss tangent should be sufficient to meet the requirement of a Q-factor of the

composite resonator of ~107.

However, besides the loss in expected frequency stability on increasing turning point

temperature, there was an additional trade-off, reduced Q-factor. In order to minimise

the frequency fluctuations in the discriminator the quality factor must be kept as high as

possible. At 50 K, in the composite structure I only observed a Q-factor of 5 × 106 in an

E-mode which is somewhat less than that estimated in section 1.3 and what can

potentially be achieved in such a resonator. The Q of the S1m (Em,1,1+δ) mode family is

significantly less than the potential Q-value given by the QE curve in fig. 4.14. The N36

(H6,1,1+δ) mode is also below the QH curve but not as significantly as the E-modes. The

curves (labelled QE and QH) are the ideal Q-factors expected for the composite resonator

in pure E and H modes when high quality pure sapphire is used as the dominant

dielectric and calculated from (1.11).
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Figure 4.13: Mode curvature verses turning point temperature (TTP). The points (circles: E-modes &
squares: H-modes) are the experimentally measured mode curvature at TTP for a variety of WG modes in
the sapphire/rutile resonator. Curve 1 is the predicted curvature for E-modes (dependent on ε||) and curve
2 is the predicted curvature for H-modes (dependent on ε⊥).
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Figure 4.14: Q-factor verses annulment or turning point temperature (TTP). Data points are the measured
quality factor of some S1m modes and the N36 mode in the composite resonator. The lines indicate the
expected composite Q-factor using the loss tangents of high quality pure sapphire and rutile (Krupka et
al. 1999a; Tobar et al. 1998b) as shown in Table 4.3.

To further prove that the sapphire itself had a seriously degraded Q-factor, we’ve

plotted the Qs of two E-modes in fig. 4.15. One (N18) is from this 24.9 mm, Russian

grown sapphire (curve 1) and the other (N115) is from a 50 mm, Union Carbide (USA)

grown sapphire (curve 2). The N115 mode Q-factor has been reduced with the

hypothetical inclusion of a concentration of 8 ppm of Ti3+ ions, the same concentration
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as in the Russian sapphire, proven in the previous section. But, over the temperature

range of 40 to 70 K, there is still more than an order of magnitude difference between

the two. Therefore, it appears that the sapphire itself has serious crystal defects, which

limit its low temperature Q-value to a constant below 50 K.
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Figure 4.15: Two E-modes from sapphire resonators with the same 8 ppm concentration of Ti3+ ions are
compared. Curve 1 is the N18 (12.72 GHz) mode from this sapphire. Curve 2 is the N115 (10.80 GHz)
mode from a 50 mm Union Carbide sapphire with losses added by the hypothetical inclusion of 8 ppm
Ti3+ ions.

4.3.2 Finite Element Analysis of Disk Structure

The cavity was analysed using Finite Element software designed at Institut de

Recherche en Communications Optiques et Microondes (IRCOM) (Aubourg and

Guillon 1991), University of Limoges, France. In this case, 2D finite element analysis

was done by Dr M.E. Tobar. He took advantage of the cavity symmetry and modelled

only one quarter in two dimensions. Electric field density plots were calculated using

the FE analysis (see fig. 4.16) for some magnetically symmetric modes, S1m and S2m.

To determine the point of TCP annulment the frequency at 10 K intervals in a 40 K

temperature range around TTP was calculated. Following this, a polynomial fit to the

data was used to find the turning point. A similar process was applied to the

experimental data, and a comparison of measured turning point temperature (TTP) is

made with that calculated in fig. 4.17.

The calculated frequency at TTP was compared with the measured frequency (see Table

4.4). The calculated values show an error due to the rutile dimension (% in brackets).
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The most significant component of this is from the error in the thickness, which is over

an order of magnitude greater than the dimensional error in the radius. The calculated

values show a discrepancy in frequency (∆f = fmeas - fcalc) with respect to the measured

values of order 0.1% for S1 modes and 0.01% for S2 modes.

Figure 4.16. Top left: Electric field density plot of the S25 mode. Top right: Electric field density plot of
the S28 mode interacting with a spurious mode in rutile. Bottom left: Electric field density plot of the S17

mode. Bottom right: Electric field density plot of the S18 mode.

Even though the dimensional errors are larger for the S2 modes in comparison to the S1

modes. The calculated frequency is closer to the measured and within the dimensional

errors. In contrast the S1 modes are all calculated to have lower frequencies out of the

range of the dimensional error. This is most likely an air gap effect due to a

discontinuity in the E-field at the sapphire-rutile interface for S1 (E) modes. The field is

almost tangential at the interface for S2 modes so this affect does not occur. The S2

modes have a higher turning point temperature and thus more field inside the rutile. The

greater dimensional error is due to the dimensional sensitivity to the frequency of

Cu
post

Cu
post

Cu
post

Cu
post

S25 S28

S17 S18



PART 1: TEMPERATURE COMPENSATED RESONATOR

114

nearby H-modes in rutile. These modes only couple weakly to the S1 (E) modes. This is

highlighted in fig. 4.16, by visualising the density of the electric field in the structure for

some S1 and S2 modes. The resonant structure of the E-field density in rutile is clearly

seen for the S2 modes, while the rutile only acts as a perturbation on the S1 modes.
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Figure 4.17. Comparison of measurement and FE calculation of the annulment temperature for some S1
and S2 modes. Points show the measurement while lines with error bars show the predictions with
uncertainty due to dimension.

TABLE 4.4. COMPARISON OF CALCULATED FREQUENCY (fcalc) VERSUS MEASURED
FREQUENCY (fmeas) AT COMPENSATION TEMPERATURE (TTP).

Mode fcalc at TTP [GHz] fmeas at TTP [GHz] ∆f [%]
S15 (E5,1,1+δ)   9.3653 ± 0.0059  (0.063%) 9.3772 0.13
S16 (E6,1,1+δ) 10.6394 ± 0.0046  (0.043%) 10.6496 0.096
S17 (E7,1,1+δ) 11.9057 ± 0.0065  (0.055%) 11.9172 0.097
S18 (E8,1,1+δ) 13.1717 ± 0.0030  (0.023%) 13.1782 0.049
S25 (H5,1,δ) 10.845   ± 0.010    (0.092%) 10.8455 0.0046
S27 (H7,1,δ) 13.783   ± 0.011    (0.080%) 13.7792 0.028

The dielectric technique depends on the ratio of electrical energy filling factor in the

sapphire crystal and the compensating perturbation dielectric. This in turn depends on

the geometry of the perturbation dielectric relative to the sapphire crystal as well as the

field structure of the excited resonant mode. To understand the measured Q-factor

values, Qres was calculated from

 R
S

R

Sapphireres p

p

QQ
δtan

11 +≈                                       (4.4)
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which was derived from (1.11) assuming high order WG modes and pR << pS ≈ 1. I

calculated the relative electromagnetic filling factor of the rutile (pR/pS), and measured

the Q-factor of the sapphire resonator without the rutile (Qsapphire). The loss tangent

(tanδR) was taken from measurements in (Tobar et al. 1998b). A good comparison

between experiment and calculation was obtained (Table 4.5). The most obvious source

of loss was the large dielectric losses in the Russian sapphire itself, probably due to

dislocations. With a higher quality sapphire crystal over an order of magnitude

improvement in Q-factor can be expected. Other sources of loss contributing to Q

degradation may have included: the copper post, which was quite thick and could have

added conductor losses, especially in lower azimuthal numbered modes; the air gap

between the rutile and sapphire; the observed cracks in the thin rutile disks, which could

have degraded the rutile loss tangent.

TABLE 4.5. ANALYSIS OF THE Q DEGRADATION IN THE SAPPHIRE-RUTILE COMPOSITE RESONATOR

FOR SOME SELECTED E-MODES AT 52 AND 77 K.
Mode T

[K]
Measured Q
(composite)

Calculated Q
(composite)

Measured Q
(sapphire)

Measured Q
(best sapphire)

Q
(expected)

S18 52 5.2 × 106 5.8 × 106 6.8 × 106 2.7 × 108 3.4 × 107

77 3.8 × 106 4.8 × 106 6.6 × 106 5.2 × 107 1.3 × 107

S16 52 3.3 × 106 3.4 × 106 4.0 × 106 2.7 × 108 2.1 × 107

77 2.3 × 106 2.4 × 106 3.3 × 106 5.2 × 107 7.5 × 106

S15 77 1.2 × 106 1.5 × 106 2.0 × 106 5.2 × 107 5.4 × 106

The resonator Q-values with and without the rutile slices are given in columns 3 and 5

respectively. The Q-values are significantly degraded compared to that of pure sapphire

(column 6) (Tobar et al. 1998a). The measured data for this sapphire from column 5 was

combined with the measured properties of rutile (Tobar et al. 1998b) in (1.11). The

calculated Q based on this is listed in column 4. These values are consistent to within

the measurement uncertainties of the measured values in column 3. However, the

expected Q-factor for the composite resonator based on the best sapphire (column 6) is

listed in column 7.

4.3.3 Sapphire-Rutile Ring Structure

In this experiment, I placed thin dielectric rings at the end of the sapphire cylinder (fig.

4.18). In the previous section disks were used, but because the high permittivity of rutile

renders the resonator susceptible to a large spurious mode density, it makes it difficult

to accurately design the annulment temperature. To overcome this, the rutile-ring
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method was developed. This method which replaces the rutile disks with rings. It has

been shown that the use of rings reduces the spurious mode density and allows better

design (Tobar et al. 1999a; Tobar et al. 2000c; Tobar et al. 2000d).

sapphire

rutile
rings

rutile
removed

Figure 4.18: Composite resonator design. Rutile rings as a perturbation dielectric were placed top and
bottom of a sapphire resonator (d = 31.65 ± 0.01 mm, L = 30.01 ± 0.01 mm). s, The inner area of the
rutile disk has been removed, leaving only an outer annulus (id = 23.64 ± 0.01 mm, od = 31.68 ± 0.01
mm, thickness =  0.42 ± 0.01  mm)

A rigorous finite element analysis was undertaken on the structure shown in fig. 4.18,

using both 3D and 2D finite element software. The 2D finite element analysis work was

done by Dr M.E. Tobar while the 3D analysis was done by G. Duchiron of IRCOM.

This finite analysis design was the result of a collaboration between the Frequency

Standards and Metrology (FSM) group at the Physics Dept of the University of Western

Australia UWA) and IRCOM.

4.3.4 Design of a 12 GHz Resonator

The initial design using the 2D finite element software developed at IRCOM was for a

12 GHz H8,1,δ (or WGE8,0,0) mode resonator (Tobar et al. 2000c). The choice of

frequency was made due to the availability of a liquid helium cooled sapphire frequency

standard for frequency comparison (Chang et al. 2000) and the choice of the azimuthal

mode number was due to size limitations of available rutile. The choice of the particular

field pattern was made for three reasons. First, because the electric field is tangential at

the rutile sapphire interface, no air gap problems can occur. The second reason is due to

the Bragg reflection that occurs between the interface of layers of different permittivity.

This occurs along the cylindrical z-axis of the resonator, due to the sapphire-rutile,

rutile-free-space and free-space-copper interfaces. The reflected waves are
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superimposed within the sapphire coherently.  The dimensions of the layers, determine

the phase of the reflected waves, and may be designed for constructive or destructive

interference. In this case, constructive interference produces a resonance within the

rutile (maximum in energy), that interacts with the WG sapphire mode, while

destructive interference produces an anti-resonance (minimum in energy), which forces

most of the resonator energy into the sapphire and out of the rutile. It is shown below

(figs 4.20 and 4.21), that there are large anti-resonance regimes where the annulment

temperature is only weakly dependent on the thickness of the rutile rings connected by

resonance regimes that are highly dependent (Tobar et al. 1999a; Tobar et al. 2000c;

Tobar et al. 2000d). The former allows for good design, that is, a significant lessening

of the dependence of the turning point-temperature (between 40 - 90 K) on

manufacturing tolerances. The third reason is less energy is required in the rutile for

compensation at a specific temperature, so the Q-factor, due to rutile losses, is larger.

This results from H-modes having a smaller temperature coefficient than E-modes.
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Figure 4.19: Schematic of the cavity and resonator modelled initially at IRCOM showing rutile disks on
the top and bottom surfaces of the sapphire resonator.

Initially, the structure in fig. 4.19 was modelled for WG modes with frequencies close

to 12 GHz at cryogenic temperatures. Due to the symmetry of a cylindrical resonator, it

was only necessary to calculate the frequency and field patterns using 1/4 of the

resonator structure in the finite element mesh. Using known values of the permittivity of

sapphire and rutile, an automatic program was used to predict the frequency of the

resonator as a function of temperature, at intervals of 2.5 K between 20 and 62.5 K, then
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10 K intervals above 70 K. As before, a polynomial fit was then applied to this data to

find the annulment temperature (TTP). This procedure was carried out for rutile

thickness between 0.03 to 1.0 mm, and the results plotted in fig. 4.20 and 4.21, labelled

“disks”.
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Figure 4.20: Annulment temperature versus thickness of rutile for N110 (E10,1,δ) mode in the structure
shown in fig. 4.19, with the rutile disks or the rutile rings as shown in fig. 4.18.
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Figure 4.21: Annulment temperature versus thickness of rutile for S28 (H8,1,δ) modes in the structure
shown in fig. 4.19, with the rutile disks or the rutile rings as shown in fig. 4.18.

The frequency of the same mode in the composite resonator in comparison to the bare

sapphire resonator was higher for H-modes as the axial boundary condition at the

sapphire-rutile interface causes the field to be squashed further into the sapphire (a
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Bragg reflection). Conversely, the frequency is lower in the E-modes as the axial

boundary conditions cause the field to be stretched by the rutile disks due to the larger

permittivity of rutile.

In general for a small thickness of rutile (~0.03 mm) there is not enough rutile to fully

compensate the resonator. Instead a point of inflection occurs at about 20 - 30 K for

both E and H-modes. When the thickness gets large enough the inflection point turns

into an annulment point and separates in two. At the point of separation the second

derivative is matched as well as the first and a flat annulment point of zero curvature is

created.

At larger values of thickness excess spurious modes exist due to modes mainly in the

rutile. To lessen the spurious mode density, “rings” were introduced (with an inner

diameter of 23.6 mm) held to the ends. This had the effect of tuning the spurious rutile

modes to higher frequencies with correspondingly larger frequency separations, and

reduced the spurious mode density. Compare “disks” with “rings” in figs 4.20 and 4.21.

However, the effect of the spurious modes on E and H-modes are significantly different

and are described separately in the following sections.

Figure 4.22: Electric energy density plots for E10,1,δ in the composite structure with rutile rings of
increasing thickness (left to right).

Figure 4.23: Electric energy density plots for H8,1,δ in the composite structure with rutile rings of
increasing thickness (left to right).
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Moving through frames of figs 4.22 and 4.23, from left to right, the thickness of the

rutile ring is increased. M1 and M2 are regions where rutile modes are interacting with

the sapphire modes. R1 and R2 are regions where the rutile has an “anti-resonance”

condition and only act to perturb the sapphire mode.

4.3.5 Temperature Characteristics of H-Modes

Fig. 4.21 shows TTP versus rutile thickness for the H8,1,δ mode. The rutile acts to only

perturb the resonant frequency when the thickness is less than about 0.12 mm. This is

the linear regime where the annulment temperature is proportional to the thickness.

However, at about 0.12 mm in the disk structure and 0.15 mm in the ring structure a

spurious mode starts to interact with the sapphire H8,1,δ mode. This spurious mode (H8,1,δ

mode in rutile) interacts due to the tangential boundary conditions, which require the

transverse electric field between the rutile and sapphire to be continuous.

After the thickness becomes large enough the rutile mode is tuned lower in frequency

than the H8,1,δ sapphire mode and the annulment temperature starts to decrease. The

rutile disks can support many WG modes, and in the range of 0 to 1 mm thickness, five

more spurious mode interactions exist. If the disk is substituted for a ring structure, the

frequency and separation of these modes is raised high enough such that only one out of

five spurious modes remains.

It is interesting to note if the interacting WG modes in rutile are ignored, the

temperature versus thickness characteristic with the disk and ring in fig. 4.21 are very

similar. The first resonance due to rutile occurs only at a slightly different thickness,

unlike the rutile WG modes, which are shifted greatly. Also, a local minimum in the

annulment temperature-thickness characteristic occurs in both cases close to 0.75 mm.

This suggests an effect that is due to the boundary condition of the H-mode at the

sapphire-rutile interface. The H-modes are quasi-TE and hence have the majority of the

electric field tangential to this boundary and thus are strongly influenced by this

phenomenon resulting from a Bragg reflection.
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4.3.6 Temperature Characteristics of E-Modes

E-modes are quasi-TM, therefore the majority of the electric field is normal to the

sapphire rutile boundary. Thus, in the linear regime (R1 in figs 4.20 and 4.21), the

filling factor in rutile is smaller for E-modes, resulting in a shallower TTP versus

thickness characteristic than for H-modes. Also, E-modes do not couple strongly to the

new Bragg modes. A close examination of fig. 4.20 reveals a small kink at 0.12 mm in

the curve describing the “disks” and at 0.15 mm in the curve describing the “rings”.

This is due to the small hybrid TE component coupling to the new Bragg mode. The

coupling is too small to see the Bragg effect dominate due to the dominant TM

structure. Ignoring spurious mode interactions, the general trend for increased thickness

is an increase in TTP. By replacing disks with rings, three spurious rutile WG modes are

reduced to one, in the range of thickness from 0 to 1 mm.

4.3.7 Experiments on the Ring Structure

To obtain the best possible oscillator frequency stability, the highest Q-factor in a

resonator with the lowest curvature of the frequency-temperature dependence is

required over the temperature range accessible with liquid nitrogen. For this reason we

chose to design the annulment point between 50 to 55 K instead of 77 K, as the Q-factor

is a factor of 6 higher and the curvature of the annulment point a factor of 4 lower. Two

rutile rings of 0.42 mm thickness, an inner diameter of 23.64 mm and an outer diameter

of 31.68 mm were purchased from Escete Single Crystal Technology. They were held to

the ends of the sapphire by sapphire holders incorporating a spring mechanism (see figs

4.24 and 4.25 – spring not shown). For holders, sapphire was the only material

considered, in order not to degrade the Q-factor.

The sapphire resonator and holders were washed for one hour in a ultra sonic bath with

a mixture of nitric and hydrofluoric acid, then washed in distilled water and kept under

pure methanol. The rutile rings due to their fragility were only unpacked at the time of

assembly and carefully handled with gloves. The composite resonator was placed in an

evacuated can, cooled to 77 K with liquid nitrogen and then to 52 K by pumping on the

cryogenic fluid. Liquid helium was used to cool below 52 K. A stable signal source was

used, and by employing an automated computer program (Luiten et al. 1996a). Q-factor,
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coupling and frequency of the resonance were measured as the resonator was allowed to

warm very slowly.

Figure 4.24: Exploded view of copper cavity, resonator and sapphire holders.

sapphire

φ23.5

rutile

φ31.65

sapphire
holder

Figure 4.25: Enlarged view of the top half of the composite resonator including the rutile rings and
sapphire holders (not to scale).

Initial experimental results are compared with FE analysis predictions in Table 4.6. Figs

4.26 and 4.28 show the fractional frequency-temperature dependence for the E and H-
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mode respectively. The H8,1,δ mode didn’t attain complete annulment in the frequency-

temperature dependence, but due to a mode interaction underwent an inflection at 55 K.

The TTP and curvature listed in Table 4.6 for this mode are estimated values from the

data away from the interaction. Even so there was excellent agreement with predicted

curvature.

TABLE 4.6: COMPARISON OF SOME IMPORTANT MEASURED AND FE ANALYSIS CALCULATED

PARAMETERS FOR THE FUNDAMENTAL WHISPERING GALLERY E AND H-MODES AT 12 GHZ.
Mode Meas. freq

at TTP

[GHz]

Predicted
freq. at TTP

[GHz]

Meas.
TTP

[K]

Predicted
TTP

[K]

Measured
curvature
[ppm/K2]

Predicted
curvature
[ppm/K2]

Measured
Q-factor

[106]
H8,1,δ 12.031 12.071 55 54 0.0365 0.0395 4
E10,1,δ 11.916 11.947 72 76 0.44 0.37 6
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Figure 4.26: Initial, experimentally measured fractional frequency of the E10,1,δ mode in the composite
resonator. Data collection stopped when a mode interaction occurred at the point 1. Point 2 is the
frequency measured at 77 K.

4.3.8 Performance of the H8,1,δ Mode Resonator

The apparent excellent agreement between the measured and predicted TTP turned out to

be fortuitous in the H8,1,δ  mode due to the spurious mode interaction on the part of the

experiment and omission of the sapphire holders in the original 2D cylindrical

symmetric finite element software (Tobar et al. 1999a). The holder was then added to

the model and the calculations redone. Later, the space (air gap) between the inside of
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the rutile ring and the sapphire spindle was also added. Furthermore, the 2D software

only allows the calculation of modes with the same azimuthal mode number (m).
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Figure 4.27: Finite element calculation of the magnetic field density for the H8,1,δ mode. The mesh shows
1/4 of the sapphire resonator spindle housed in a Cu cavity, with the rutile rings held to the end faces by
sapphire holders. Spring mechanism not shown.
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Figure 4.28. Measured fractional frequency-temperature response of the H8,1,δ mode(curve 1). The black
squares (curve 2) are the results of the 3D finite element calculations.

Fig. 4.27 shows a magnetic field density plot of the H8,1,δ mode. The basic regions of the

finite element mesh are shown, including metallic cavity, rutile rings and sapphire
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resonator and holders. The software automatically generates a triangular mesh in each

of these regions. The stainless steel leaf spring mechanism that keeps the rutile held

firmly is situated between the cavity and the end of the holders and has little influence

on the electromagnetic properties. Therefore it was ignored in the mesh.

The H8,1,δ mode measured frequency-temperature dependence (in fig. 4.28) shows a

mode interaction. The Q-factor was degraded due to the nearby spurious mode (fig

4.33). The 2D software did not predict this interaction; thus the device was modeled

with 3D software. This software allowed the determination of the scattering parameters

from a forced sinusoidal response, and calculated the resonance frequency of any

azimuthal variation. The calculation of transmission scattering parameter (S21) around

the temperature of the interaction is shown in fig. 4.30. The swept frequency

characteristic is exactly the same as observed on the oscilloscope during the interaction.

The interacting mode was identified a Whispering Gallery Radial Magnetic mode, in

particular the WGRH7,0,5. Fig. 4.30 shows the mode interaction determined from the 3D

analysis. WGRH modes were only recently discovered to exist in an anisotropic rutile

resonator (Tobar et al. 2000b). These modes travel around the perimeter of the resonator

like a normal WG mode, but at the same time travel up and down the z-axis, with

dominant field components of Hr, Ez, and Eφ. This mode is different to the usual WGH

(or E) modes, which have dominant field components of Hr, E� and Hφ, with

propagation predominantly around the perimeter and along the radius within a caustic

inner radius determined by the strength of Hφ.

Comparison of the 3D calculation with experiment is shown in fig. 4.28. The mode

interaction was confirmed using the 2D software by searching for modes of m = 7 near

the resonant frequency. It was found that the WGRH7,0,5 was at the same time

interacting with a H7,2,δ rutile mode coupled to a H7,1,2+δ sapphire mode. The 2D

magnetic field density plots of the interaction are shown in fig. 4.31. To date WGRH

modes have not been observed in a sapphire resonator. However the addition of the

holders and the rutile enabled this mode to exist at this frequency. To remove this

unwanted mode I could have made the holders thinner but didn’t because of the

possibility of breaking them.



PART 1: TEMPERATURE COMPENSATED RESONATOR

126

12.0290

12.0305

12.0320

50 60 70 80 90

F
re

q
u

e
n

cy
 [

G
H

z]

Tem perature [K]

1

3

2

Figure 4.29: Measured frequency verses temperature of the H8,1,δ mode. Curve 1 was taken from the first
experiment (fig. 4.28) with a mode interaction at 70 K. Curve 2 was taken after the loop probe coupling
was reduced, de-coupling the spurious mode interaction, though a smaller interaction still was observed
between 78 and 80 K. Curve 3 was taken after mode-spoiling slots were added to the top and bottom lids
of the copper cavity.

To minimise this interaction, I put radial slots in the top and bottom plates of the cavity

(Tobar et al. 1994; Woode et al. 1996). The slots were made to be non-radiating with

respect to the H8,1,δ mode, but radiating with respect to the WGRH7,0,5 mode. This was

achieved by machining two slots in the lid of the resonator that coincided with the nodes

of the current density for an even azimuthal mode number. It had the effect of creating a

clean background (in the frequency domain) either side the operational mode similar to

the mode selection used in (Monaco et al. 1996) and was observed on the oscilloscope.

The result on the frequency temperature dependence is shown in fig. 4.29 and in fig.

4.32 where a comparison is made with calculations utilizing the mesh in fig. 4.27. The

spurious mode was suppressed and the annulment point was lowered in temperature

(curve 3 in fig 4.29). It was evident that the influence of the interaction created a larger

filling factor in the rutile, which raised the annulment temperature. The inclusion of the

sapphire holders in the model also lowered the turning-point temperature predicted from

the modelling and is discussed later in more detail.  Fig 4.29 shows three successive

experiments on the H8,1,δ mode. The above-mentioned interaction between spurious

modes (m = 7) and the operational mode (m = 8) was enabled by loop probe coupling.

On the second run (curve 2), it was eliminated at 70 K by reducing the coupling. Still

there remained a small interaction between 78 and 80 K. A comparison of some

important parameters between experiment and the different models are shown in Table

4.7.
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Figure 4.30.  Calculated S12 scattering parameter as a function of frequency, with the 3D finite element
model at T = 70 K. The 3D electric field density is plotted at the resonant frequencies of the interaction,
to identify the mode structure.
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Figure 4.31: Left: Magnetic field density plot of the WGRH7.0,5 mode in the sapphire-rutile composite
resonator. Right: Magnetic field density plot of the H7,2,δ rutile mode coupled with the H7,1,2+δ sapphire
mode.
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TABLE 4.7: COMPARISON OF EXPERIMENT AND FINITE ELEMENT CALCULATIONS OF FREQUENCY,
TURNING POINT TEMPERATURE (TTP) AND Q-FACTOR FOR THE H8,1,δ MODE.

Exp. no absorber Exp. absorber 2D FE no holder 2D FE holder 3D FE
Freq. at TP 12.031 [GHz] 12.031 [GHz] 12.071 [GHz] 12.066 [GHz] 12.025 [GHz]
TP temp. 55 [K] 51.2 [K] 54 [K] 51.5 [K]

Q-factor at TP 4 × 106 13 × 106 30 × 106 33 × 106
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Figure 4.32: Fractional frequency offset (from the frequency at the turning point temperature) verses
temperature. Curve 1 is the experimental measurements after5 strips of absorber added (from curve 3 in
fig. 4.29). Curve 2 is the experimental measurements after silver plating the cavity walls and reducing the
absorber to 2 strips. Curve3 is the calculation from FE analysis.

The frequency-temperature dependence is well accounted for, however the Q-factor

needs further explanation. Comparison of the calculated and measured temperature

dependence is shown in fig. 4.33. The calculation assumes the surface resistance of

copper (Cu) is of the form RS = 9.0 + 0.08T mΩ at 12 GHz, ie. RS = 13 mΩ at 50 K

(Luiten et al. 1998). Before the absorber was added to the slots the mode interaction

degraded the Q-factor, highlighted by the clear dip in the temperature dependence

between 60 and 70 K, shown in fig. 4.33. Also, I measured a Q-factor of 3 × 107 in the

H9,1,δ mode at 13.1 GHz  (see the next section).

The Q-factor clearly improved once the spurious mode was eliminated. However, the

measured Q-factor dependence (fig. 4.33) was still degraded by a factor of 1.5 to 3

between 77 to 50 K, respectively. After further FE computation, we came to the

conclusion that the observed discrepancy was due to higher wall losses in the

constructed resonator than expected. The next step to improve the Q-factor would be to

implement techniques to improve the RS of the cavity. On inspecting the cavity, I
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noticed that the surface was highly oxidized. Consequently, I silver-plated the copper

cavity in anticipation of obtaining a higher Q-factor. Also the amount of absorber was

reduced and arranged it as shown in fig 4.34. The absorber material was 1 mm wide and

18 mm long. Previously it was 2 mm wide and about the same length but 5 strips evenly

spaced instead of two placed at the right geometric angles to match the nodes of m = 8

modes. One slot was positioned at 22.5° from the probe and the other at 90° to the first.

High order WG modes, which are highly confined to the sapphire resonator, were

unaffected but cavity modes were suppressed. From curve 2 in fig. 4.32, it seems that

there is still some affect from a rutile mode as the turning point has moved up to 53.8 K

and the Q-factor at 77 K was slightly lower than when 5 absorbing strips were used.
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Figure 4.33. Experimental and calculated Q-factors as a function of temperature. Curve 1 is the data for
the experiment with no absorber and curve 2 is with 5 strips of absorber.
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Figure 4.34: Top plate of copper cavity showing the mode spoiling slots. Slots are filled with microwave
absorber. The bottom plate is the mirror image so that the slots coincide.
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The resulting Q-factor, in the H8,1,δ  mode, in the silver plated cavity was 1.5 × 107 at 52

K and 7 × 106 at 77 K, only slightly improved at 52 K, over case with bare copper walls.

The silver deposition was not done so well and areas of copper were visible through it.

Considering the results reported in the next section of the H9,1,δ mode, where a Q-factor

at the dielectric limit is reached, it would appear that the H8,1,δ  mode here was still

affected by some mode interactions. The Q-factor of this mode was measured to be 4.4

× 106 at 77 K, without absorber but only the slots, which were cut completely through

the copper cavity so the cavity modes would radiate. In this case, the turning point

temperature was about 55 K, the same as in the case that was limited by a mode

interaction.

4.3.9 Compensation via a Rutile WG Mode Interaction

The H9,1,δ mode was experimentally determined to have an annulment temperature of 56

K (see fig. 4.35) and a Q-factor of 3 × 107 (see fig. 4.36) at 13.13 GHz (Hartnett et al.

2000c). This is important because it shows that the result fulfils the requirements for an

oscillator for use with the new generation of fountain and cold atom frequency

standards (Dick 1987; Santarelli et al. 1999).

However, careful analysis, presented in the following, revealed that the annulment

condition was satisfied during a mode interaction with a rutile mode of the same

azimuthal number (m). The strong coupling to the rutile mode could enhance

mechanical and temperature instability and I believe that a better frequency stability can

be obtained using the perturbative Bragg technique described in the previous section.

Also, I show in the following section that the design of the turning point temperature is

less accurate due to the greater sensitivity to the resonator dimensions. That is, the exact

temperature of the mode interaction is harder to predict than in the Bragg reflection

regime, where the annulment temperature has only a small dependence on the rutile

dimension.

Experimental results reveal a hump in the Q-factor versus temperature characteristic as

shown in fig. 4.36. The frequency and Q-factor dependence is similar to that modelled

and shown in figs. 4.37 and 4.38. This dependence is described by a mode interaction

with the H9,2,δ mode in rutile. The magnetic field density of the H9,1,δ sapphire mode and
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the H9,2,δ rutile mode during the interaction are shown in fig. 4.39. However, the

discrepancy in the prediction of the annulment temperature of 34 K is unacceptable for

design. Also, the sensitivity to mechanical instabilities was confirmed, when the turning

point changed by 3.5 K between experimental runs (which involved cycling and pulling

apart the cavity). In contrast, the annulment point (TTP) of the H8,1,δ mode did not

change during cycling once the nearby spurious mode was de-coupled.

13.1345

13.136

13.1375

0 20 40 60 80 100

F
re

q
u

e
n

cy
 [

G
H

z]

Tem perature [K]

mode interactions

TP

Figure 4.35: Experimental measurement of the frequency-temperature dependence of the H9,1,δ mode.
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Figure 4.36: Experimental measurement of the Q-factor-temperature dependence of the H9,1,δ mode.
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Figure 4.37: Finite Element calculation of the frequency-temperature dependence of the H9,1,δ mode. At
low temperatures the dependence is dominated by a strong mode interaction with the H9,2,δ mode in rutile.

After the absorber strips (and the silver plated walls) were added the measured Q-factor

of this mode at 52 K was only 2.1 × 106. This is in good agreement with the predicted Q

at this temperature (fig 4.38), but highlights the sensitivity of the mode to the presence

of the spurious rutile mode but also spurious cavity modes.
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Figure 4.38: Finite Element calculation of the Q-factor-temperature dependence of the H9,1,δ mode.
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Figure 4.39: Left: Magnetic field density plot of the H9,1,δ mode in sapphire at the calculated annulment
temperature of 90 K. The presence of the interacting rutile mode, which dominates the temperature
dependence is clearly visible. The rutile mode is identified as H9,2,δ . Right: The magnetic field density
plot of the rutile H9,2,δ mode at 70 K.

To identify the mode interaction in the H9,1,δ sapphire mode, magnetic field density plots

were produced from the finite element calculation (fig. 4.39). This same type of

dependence was observed by the English-German group (Hao et al. 1999). It seems that

the implementation of a resonator of this type will have a greater susceptibility to long

term drifts due to creep processes in the resonator. In the 4 K sapphire clocks, creep

processes have been determined to be a major limitation.  Recently a careful redesign of

the resonator support mechanism has given an improved performance (Chang et al.

2000).

Also the H10,1,δ mode was studied, with and without microwave absorber, using only the

copper shield. Five strips of absorber were positioned in the top and bottom plates in a

radial pattern, which matched the azimuthal mode pattern of the mode. The mode

interaction that was initially observed (curve 1 in fig. 4.40) when the absorber wasn’t

used was completely suppressed (curve 2 in fig. 4.40). There were turning points at

about 58 and 62 K due to the spurious mode interaction. After adding the absorber, I

measured a single TP about 47 K (by extrapolating curve 2). This TP may have been

present in the first run but I didn’t cool down sufficiently to see it. Even so, this

indicates that the two TP’s around 60 K were the result of a much larger filling factor in

the rutile due to the spurious mode, which when killed, left only the much lower TP.

This mode’s Q value was also heavily degraded around 60 K, without the absorber
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(curve 1 in fig. 4.41). With the introduction of the absorber the quality factor

approached 3 × 107 at about 50 K (curve 2 in fig. 4.41). This appears to be at the

dielectric limit as energy confinement is greater in this mode than in the H8,1,δ mode and

thus is not limited by the copper wall losses.
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Figure 4.40: Measured frequency-temperature dependence of the H10,1,δ mode. Curve 1 is without
microwave absorber, and curve 2 is with 5 microwave absorber strips in a radial pattern that matches the
field structure. “TP” indicates the temperature at which turning points existed.
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Figure 4.41: Measured Q-factor-temperature dependence of the H10,1,δ mode. Curve 1 is without
microwave absorber, and curve 2 is with 5 microwave absorber strips in a radial pattern that matches the
field structure.
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4.3.10 Fundamental E and H-Mode Families

In this section, I compare the measured and calculated annulment temperatures for the

fundamental Em,1,δ and Hm,1,δ sapphire mode families. Results are plotted in fig. 4.43.

WG resonant and anti-resonant modes of the same azimuthal number (m) in the rutile

predominantly effect both families. The lowest frequency resonant modes in the rutile

for a specific m are H-modes. Thus, it turns out, even the E-modes have their

temperature dependence determined through interactions with these modes. I have

determined that even in the perturbation (non-resonant) regime when the rutile is

extremely thin and of the order 0.1 mm, E and H-modes are both compensated by the

rutile perpendicular permittivity component. This is because the aspect ratio of the

rutile, the lowest frequency modes of resonance are H-modes, which couple to the

perpendicular permittivity. This is surprising and naively in (Tobar et al. 1998a) we

assumed E-modes were compensated by the parallel permittivity component in the rutile

disks. Forced resonance in the sapphire will be predominantly influenced by the nearest

resonance frequency in the rutile, and hence the perpendicular permittivity.

Because both modes are compensated by the perpendicular permittivity in rutile, it turns

out that compensated H-modes have a higher Q-factor than compensated E-modes at

any given annulment temperature. This is because E-modes are determined by the

parallel permittivity in sapphire, which has a higher temperature coefficient than the

perpendicular. Thus, more energy is required in rutile to compensate the E-modes at a

specific temperature. This in turn adds more loss due to the composite Q-factor being

determined by a greater proportion of the loss tangent of rutile than in the H-modes.

E-modes are more susceptible to creep and other mechanical effects that change the

position of the rutile. This is because the majority of the electric field across the

sapphire-rutile interface is normal to the interface. In section 4.3.2, it was shown that air

gaps effected the frequency prediction of E-modes (Tobar et al. 1999b). Further to this I

measured a creep in the annulment point of the E10,1,δ mode at 12 GHz as the cavity was

cycled. According to modelling, the annulment point was raised from 69 K to 75 K as

the air gap was flattened out due to cycling (fig. 4.42).
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Figure 4.42: Measured frequency of the H10,1,δ mode vs temperature. Curves 1 to 3 indicate 3 successive
cycles. On the third cycle the coupling was also changed. TP indicates the annulment point.
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Figure 4.43. Calculated frequency at TP with and without the sapphire holder compared to experiment.
Left: Hm,1,δ  modes. Right:Em,1,δ  modes.

Fig. 4.43 show the sapphire E and H-modes that are tuned between the Hm,1,δ and Hm,2,δ

rutile modes. The modes that are close to the anti-resonance of these modes have a

minimum annulment temperature and experiment agrees very well with the calculations,

both with and without the sapphire holders. The sapphire holder that keeps the rutile in

position, also perturbs the frequency of the rutile modes. Thus calculations, with and

without the sapphire holder, are very different for sapphire modes close to the rutile

modes of resonance. For the Hm,1,δ modes only the m = 8 mode was accurate without the

holder, which was designed at the anti-resonance. Once the support structures were

accounted for, mode frequencies were predicted more accurately. However, modes that
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had annulment points due to a mode interaction (ie. H9,1,δ, H10,1,δ modes) were not

calculated accurately. Also, the large variation in result with and without the holder

highlights the sensitivity to dimensional changes in this regime. Our design of choice

was for the H8,1,δ mode, which has the necessary attributes; easy to design annulment

temperature (with respect to manufacturing tolerances) and reduced sensitivity to the

support structure.

4.4 Future Work

In order to increase the Q-factor of the operational mode of resonance, the next

implementation of the sapphire-rutile resonator will be made from high-Q sapphire and

rutile rings with a larger diameter. Calculations based on the above experiments predict

a Q-factor of 3 × 107 is achievable at a compensation temperature of 60 K with a mode

curvature of 4 × 10-8. It will be designed to operate close to the cesium hyperfine

transition frequency 9.192631770 GHz.
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5.1 Introduction

A frequency discriminator (FD) comprises a dispersive element such as a resonator or a

delay line plus a phase sensitive read-out system. The discriminator may use modulation

techniques (such as a Pound system) or dc techniques. It is used as a sensor of a

frequency control system (fig 8.1), which cancels oscillator frequency excursions from

the discriminator characteristic frequency. The latter is either the resonance frequency

(fres) in a high-Q resonator or 
L

c
n

2
 in a delay line of length L, where n is an integer and

c, the speed of light.

VCO

feedback
control

loop

FD
Figure 8.1: Schematic of a voltage controlled oscillator (VCO) with a frequency discriminator (FD) and
a control circuit that corrects for frequency drifts in the VCO.

A FD’s sensitivity to oscillator frequency fluctuations results from frequency to phase

conversion in the dispersive element which disturbs the balance of a “phase bridge”,

resulting in an error voltage at its output. The higher the sensitivity of the FD the lower

the phase noise of a frequency-stabilized oscillator.
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5.1.1 Phase Noise

In general, the signal from an oscillator can be represented by:

)](2cos[)}(1{)( 00 ttftVtV φπα ++=                                       (5.1)

where V0 is the average amplitude, f0 the average frequency, α(t) is the fractional

amplitude fluctuations such that 1)( <<tα and φ(t) the phase fluctuations where

02 fdtd πφ << .  The auto-correlation function of the signal V(t) can be expressed as:

)2cos()]()(1[
2

)( 0

2
0 τπτκτκτκ αφ f

V
++=                                (5.2)

where κφ   and κα are the auto-correlation functions of phase and amplitude fluctuations

respectively. Applying the Wiener-Khintchine theorem to (5.2), the spectral density of

voltage fluctuations of the signal described by (5.1) in the vicinity of f0 is given by;

)]2()2()(2([
4

)2( 0

2
0 fSfSff

V
fS AMPM πππδπ ++−=                      (5.3)

where SPM(f) is the Double Side Band (DSB) spectral density of phase fluctuations and

SAM(f) is the DSB spectral density of amplitude fluctuations at Fourier frequency, f. The

amplitude or phase noise may also be represented by �AM(f) = SAM(f)/2 or �PM(f) =

SPM(f)/2, which is termed the Single Side Band (SSB) noise.

As follows from (5.3) the energy in the spectrum of the signal (5.1) is not confined to a

single frequency (f0), but noise sidebands spread around a central bright line,

represented by the δ-function in (5.3). For many oscillator the spectral density can be

described as a finite polynomial expansion in terms of the Fourier frequency:

α

α
α fhfSPM ∑=)( .                                                  (5.4)
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The values of α for which these processes are defined are as follows; α = 0, white phase

noise; α = -1, flicker phase noise; α = -2, white frequency noise; α = -3, flicker

frequency noise; α = -4, random walk frequency noise; α = -6, random walk frequency

aging.

Depending on the observation time, the frequency stability of an oscillator can be

characterised both in the frequency and time domains. For short observation times, the

phase noise spectral density approach is usually used. Over longer periods the Allan

variance (after Prof. Dave Allan) is usually applied, and is explained in the following

section.

5.1.2 Allan Variance

Allan variance (Allan 1966; Allan 1987; Barnes et al. 1971) is the traditional

measurement of the time domain fluctuations in an oscillator’s frequency, which will be

defined in this section and related to the phase spectral density defined above. Finally,

the Allance variance will be generalised to a measure of the fractional variations of any

fluctuating parameter.

The instantaneous fractional frequency is defined as

dt

d

f
fty

φ
π 0

0 2

1
)( +=                                                   (5.5)

The fractional-frequency fluctuations over a measurement (or sample) time interval (τ)

is defined by integrating (5.5) over the measurement time interval tk to tk + τ,

τπ
φτφ

τ

τ

02

)()(
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f

tt
dttyy kk
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t
k

k

k

−+
=≡ ∫

+

,                                          (5.6)

which can be measured on a frequency counter. By defining the series, tk to tk + T,

where T is the repetition time between samples of integration time τ, the N-sample

variance is;
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where N is the number of frequency samples. The Allan Variance is a special case of

this when N = 2 and there is no dead-time, that is, τ = T.

2
1

2 )(
2

1
),,2( kky yy −≡ +ττσ                                           (5.8)

where the angle brackets represent an infinite time average. In practice, a finite number

of samples are used to calculate the time average variance. The main advantage of the

Allan Variance is that it is convergent in the presence of most types of noise, as N

approaches infinity, even when the N-sample variance (5.7) isn’t. This definition may

be generalized to include any fractional quantity and will be labelled 2
xσ , where x

represents δx/x of some parameter being measured.

One can also calculate the Allan variance by knowing the spectral density of frequency

fluctuations. This is achieved by the following integral transform (Vanier and Audoin

1989);

∫
∞

=
0

2

4
22

)(

)(sin
)()(2)( df

f

f
fHfS yy

τπ
τπτσ                                (5.9)

where Sy(f) = (f/f0)
2 SPM(f) is the spectral density of fractional frequency fluctuations and

H(f) is the transfer function of the low-pass filter placed in front of the frequency

counter. Equation (5.9) relates the quantities that estimate the oscillators fractional

frequency stability in the time (σy) and frequency (Sy) domains. For a variety of noise

processes that are commonly encountered, (5.9) results in analytic expressions for σy,

which may be found in various texts including (Vanier and Audoin 1989). This allows

measurements taken in the frequency domain to be converted to the time domain and

visa versa.
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Characterizing an oscillator’s frequency instability in terms of the square root of the

Allan variance or Allan deviation of fractional frequency fluctuations, the limit due to

the frequency discriminator (FD) intrinsic voltage noise is given by,

uf
Volt

S
FD
y resFD

σσ 11= ,                                              (5.10)

where SFD is the FD sensitivity or conversion ratio (Volts/Hz),  fres the resonator

operational mode frequency and σu the Allan deviation of fractional voltage fluctuations

at the output of FD. In calculating σu, the voltage data were normalized to 1 volt, then

the square root of the Allan variance of the resulting data calculated as outlined above.

5.1.3 Frequency Discriminator Sensitivity

In (Galani et al. 1984; Galani et al. 1985) the resonator was used as both a narrow band

pass filter in the loop oscillator and a dispersive element of the FD (fig. 5.2). The

relatively high mixer-effective-noise temperature limited discriminator’s frequency

sensitivity. In (Walls et al. 1990) the signals reflected from the resonator and

transmitted through it are combined to improve the FDs sensitivity.

amplifier
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VCP
β1

resonator

filter

ϕ
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mixer

phase
shifter

control
circuit

ϕref

LO RF

IF

LNA

Figure 5.2: The phase bridge FD in situ with a microwave loop oscillator. Thick lines represent the
microwave circuit, while the thin lines represent the dc control circuit that feeds back an error voltage to
control a voltage controlled phase shifter (VCP) inside the loop oscillator.
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One of the important figures-of-merit for any FD is its sensitivity (or frequency-to

voltage conversion). In the following, I derive this for the phase bridge shown in fig.

5.2. If the carrier signal incident on the resonator is )cos( 0tVc ω  then the reflected

signal is )cos(ˆ
0tVc ωΓ  where Γ̂  is the complex reflection coefficient. An error signal

(uIF) derived from the output of the mixer is fed back to control the loop oscillator

length, is equal to the product of the LO signal, )cos( 0 refc tV ϕω + and the reflected

signal, )cos( 0 Rc tV ϕω +Γ ,

)}2cos(){cos( 0 RrefrefRresIF tPu ϕϕωϕϕκ +++−Γ=                       (5.11)

where κ is the mixer power-to-voltage conversion ratio )/( WV and resP is the incident

power on the resonator. Using a low-pass filter the doubled frequency is rejected. After

some trigonometric manipulation (5.11) becomes

[ ] [ ]
[ ]

[ ] )12.5(}ˆRe{

)12.5(
2

}ˆ{Im

)12.5()}sin(ˆIm)cos(ˆ{Re

cP

bP

aPu

refres

refres

refrefresIF

πϕκ

πϕκ

ϕϕκ

→Γ−=

→Γ=

Γ+Γ=

ρ1 ρ2

R1 L R2
C

R

Figure 5.3: Schematic of equivalent circuit model for the high-Q resonator.

In order to calculate the sensitivity of the FD, a high-Q resonator was modeled as a

parallel LCR circuit (fig. 5.3).  The probes were modeled as resistive (R1 and R2 on

ports 1 and 2 respectively) with small series inductance (ρ1 and ρ2). In this equivalent

circuit model, couplings on ports 1 and 2 are defined by βx = R/Rx (x = 1 or 2) and the

effective coupling β1* = β1/(1 + β2) and visa versa. Scattering parameters, Sij (i,j = 1,2)

were calculated from the model and expressed as;
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where ξ is the frequency detuning defined as { }
5.0f
ff

f
f

f
f resosc

osc

res

res

oscQ ∆
−≈−=ξ ; Q is the

unloaded Q-factor; fosc is the operational frequency of the oscillator.

Depending on the value of the reference phase shifter, uIF becomes either phase (5.12b)

or amplitude (5.12c) sensitive. When phase sensitive it is dependent on the imaginary

part of the reflection coefficient, and assuming zero probe inductance and Γ̂  = S11 from

(5.13), (5.12b) may be expanded as

 










∆
∆

++
=

)(
5.021

1

1 LresIF
f

f
Pu

ββ
βκ                                        (5.14)

when ∆f = fres - fosc << 
Q

f
f resL

2
)1( 21

)(
5.0 ββ ++=∆  (half the loaded bandwidth). The FD

sensitivity (SFD) is the frequency derivative of uIF  and from (5.12b) may be expressed as

( )Hzf
KPS w

ampresFD
V]ˆ[Im

∂
Γ∂= µκ                              (5.15)

where w
ampK µ  is the gain of a low noise microwave amplifier (LNA) that may be added

before the mixer. Γ̂Im  as a function of ∆f is plotted in fig. 5.4, for values of )(
5.0
Lf∆ =

500 Hz and *
1β  = 0.5 (curve 1), 0.75 (curve 2) and 1 (curve 3). Near ∆f = 0, the gradient
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is constant, hence (5.14) results in a linear function. This gradient and hence SFD is

maximized when *
1β  = 1.

-3000 -2000 -1000 0 1000 2000 3000

-0.4

-0.2

0

0.2

0.4

Figure 5.4: Plot of the imaginary part of the reflection coefficient. The slope of the curve is the FD
sensitivity.

Ideally, the reference phase shift is set exactly π/2, but in practice this is not always

achieved. For non-zero reference-phase-shifter error (δϕref) it can be shown that (Ivanov

et al. 1998b)

 ref
Lw

ampres fKPf δϕ
β

ββκ µ )(
5.0

1

121
∆

−+
=∆ .                            (5.16)

By critically coupling to the cavity, uIF can be made insensitive to reference phase

shifter error. In the following analysis, generally it is assumed that δϕref  = 0 and ∆f = 0

when calculating SFD. I employ different configurations of interferometers to achieve

the effect of critical coupling which (as shown in fig 5.4) gives the FD its maximum

sensitivity to frequency excursions from the resonator frequency.

Critically coupling the resonator (suppressing the carrier) permits a small signal

operation of the read-out system and reduces its effective noise temperature.  It also

enables a low noise microwave amplifier (LNA) to be placed in front of the non-linear

mixing stage (see fig. 5.2), further reducing its noise contribution. G.J. Dick et al

implemented this technique to achieve a phase noise of -125 dBc/Hz, at 1 kHz offset

from the carrier, in an 8.6 GHz VCO by locking it to a 77 K sapphire loaded cavity

(Dick and Santiago 1992).

∆f  [Hz]

m
Γ

2
1

3
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As early as 1959, (Whitwell and Williams 1959) described the application of the carrier

suppression technique for improving the sensitivity of microwave FDs. Their idea was

to enhance the phase noise of the input signal by suppressing the carrier and take

advantage of the low noise operation of the phase sensitive read-out system. (Ondria

1968) summarized applications of carrier suppression filters for oscillator phase noise

measurements. He also analyzed an important particular case of a carrier suppression

filter consisting of a critically coupled resonator in reflection combined with a

circulator.

The frequency sensitivity of a FD based on almost critically coupled resonator is limited

by the relatively high effective noise temperature of its read-out system. This is because

it is practically impossible to achieve necessary levels of carrier suppression, at which

the low-noise operation of the read-out is ensured, by adjusting the resonator’s coupling

coefficient. Significant improvements in the frequency sensitivity of FDs has been

achieved with the application of interferometric carrier suppression techniques as was

originally suggested in (Whitwell and Williams 1959). Such an approach is free from

the drawbacks inherent to the use of almost critically coupled resonators and enables

more than 100 dB of carrier suppression to be reproducibly obtained (Ivanov et al.

1998a) (see fig. 5.5). Combining the principles of interferometric carrier suppression

with the recent technological advances in high-Q sapphire loaded cavity (SLC)

resonators and low-noise HEMT amplifiers, has enabled the development of microwave

interferometric FDs with almost thermal noise limited sensitivity (Ivanov et al. 1995;

Ivanov et al. 1998b). Making use of interferometric FDs for the purpose of oscillator

frequency stabilisation resulted in more than 25 dB improvement in oscillator phase

noise performance as compared with the previous state-of-the-art. For example, the

phase noise of a 9 GHz microwave oscillator was reduced to –150 dBc/Hz at 1 kHz

offset from the carrier without use of cryogenics (Ivanov et al. 1996).

In this chapter, I analyze novel configurations of interferometric FDs, enabling better

sensitivity than that of the conventional interferometer (fig. 5.5).
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Figure 5.5: The interferometric FD (shaded area) employed by (Ivanov et al. 1995; Ivanov et al. 1998a;
Ivanov et al. 1998b) in situ with a microwave loop oscillator. The conventional interferometric FD (CI
FD) is identical except with the directional coupler replaced by a 3-dB hybrid.

5.2 Single Directional Interferometric FD

The SD interferometric FD (patented) is shown schematically in fig. 5.6. In such a FD

the reflected and transmitted signals travel through different arms of the interferometer

and combined in a 3-dB hybrid.  A phase shifter (ϕ) and an attenuator (α) are inserted

into one arm of the interferometer to meet the necessary phase and amplitude balance

conditions to suppress the carrier at one of the outputs of the 3-dB hybrid. The latter

may be replaced with a Wilkinson power divider without any effect of FD performance.

As in the conventional interferometer a LNA is added after the carrier suppressed port

to increase the conversion efficiency of the FD by the amount of the amplifier gain.
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Figure 5.6: Schematic of the single directional (SD) FD.

Assuming zero probe inductance and a microwave signal of amplitude Vinc incident on

the interferometer (Pinc in fig. 5.6), the interferometer output signal at the ∆-port of a 3-

dB hybrid is







 −= −−

∆
ϕα j

inc eSSVV 1112
2

1

2

1
                                    (5.17)

Using (5.13), the on-resonance (fres = fosc) amplitude transfer function of the

interferometer can be shown to be
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To balance the interferometer (that is, Tint = 0), the required attenuation is
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1
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1

ββ

βπ
ϕ . The parameter α must be

positive representing an additional attenuation required for carrier suppression. If the

value of α is negative the attenuator should be placed in the other arm of the

interferometer.

The FD sensitivity is found from (5.15) with Pinc, the power incident on the

interferometer, substituted for Pres, the power incident on the resonator, and Tint, the

interferometer transfer function, substituted for the reflection coefficient, Γ̂ . As follows
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from (5.15), to compare the different types of FD it is sufficient to calculate values of

f

T

∂
∂ ][Im int in each case.

For a SD FD, the maximum value of 
f

T

∂
∂ ][Im int is achieved at fres = fosc:
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where β+ and β– are defined by 222 21231 ββββ +±+=± . It is possible to show that

at the optimum coupling, β1 = 0.603 and β2 = 0.104, 
)(

5.0max

int 1

2

1][Im
Lff

T

∆
=

∂
∂  and the

sensitivity of the SD FD is 4.4 dB greater than that of an optimally tuned conventional

interferometric (CI) FD based on a 3-dB hybrid at both the input and output of the

interferometer.

5.3 Bi-directional Interferometric FD

The BD FD is shown schematically in fig. 5.7. It comprises of a 3-dB hybrid coupler, a

high-Q resonator, a phase shifter (ϕ) and an attenuator (α) connected in series. A

microwave signal is applied via a circulator (input in fig. 5.7), and travels through both

arms of the interferometer. Two signals reflected off and two signals transmitted

through the resonator are combined in the 3-dB hybrid. Generally, when the carrier is

suppressed at one output port of the hybrid, the signal amplitude at the other port is non-

zero, with one important exception. When β1 = β2 = 0.5, no reflected signal exists at

either the sum or difference port (see below). The frequency sensitivity of a bi-

directional FD depends on its tuning and, in particular, from which port of the

interferometer the output signal is taken. In the following, I consider two configurations.
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Figure 5.7: Schematic of the bi-directional (BD) FD.

5.3.1 First Configuration

First, I assume that the output signal with suppressed carrier is taken from port 1 (∆-port

of a 3-dB hybrid coupler in fig. 5.7). In such a case, the on-resonance transfer function

of the interferometer is given by
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By equating Tint to zero, phase and amplitude balance conditions of the interferometer

are determined. They are: 
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The maximum sensitivity of the BD FD is achieved at β1 = 1 and β2 = 0, or visa versa;

and equal to that of a conventional interferometric FD.  The resulting topology of the

optimally tuned FD is identical with that described in (Whitwell and Williams 1959).

5.3.2 Second Configuration

Secondly, I assume that the conditions of carrier suppression are satisfied at port 2 (c-

port of circulator in fig. 5.7). In such a case, the on-resonance transfer function of the

interferometer is
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When β2 ≈ 0.5, the conditions of carrier suppression are:

for β1+β2 ≤ 1,
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which is a factor of two greater than that of the CI FD. Also, at β1 = β2 = 0.5, the power

at both outputs of the interferometer becomes zero, which means that all the power of

the input signal is entirely dissipated in the resonator.

5.3.3 Dual Reflection Interferometric FD

carrier
suppressed port

ϕ α

high-Q
cavity

input

 coupled port

ϕref

αP

short or open

Figure 5.8: Schematic of the dual reflection (DR) FD.

In a particular case, when one of the resonator ports is de-coupled from the external

circuitry, the configuration of the interferometer is shown in fig. 5.8. It is very similar to

that described in (Whitwell and Williams 1959), except for a 3-dB hybrid replaced by a

directional coupler to divert most of the signal power into the resonator. The sensitivity

of such a FD, referred to below as a dual reflection (DR) FD, is optimised by setting the

resonator’s coupling close to critical (β ≈ 1) and reducing the coupler’s directivity (αP

→ 1), while maintaining the interferometer balanced. At β ≈ 1 and αP ≈ 1, the frequency

sensitivity of the DR FD approaches that of an optimally tuned bi-directional FD.

5.4 Experimental Results and Discussion

The frequency sensitivity of different inteferometric FDs was calculated as a function of

resonator coupling coefficient β2. The results of such calculations are shown in fig. 5.9a

and 5.9b. It was assumed that each FD was optimally tuned and its sensitivity

normalised relative to that of a CI FD. Curve 1 in fig. 5.9a corresponds to a SD FD.

Curves 2 and 3 show dependencies of the SFD of a BD FD with the interferometer output

signal taken from port 1 (first configuration) and port 2 (second configuration)
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respectively. It is seen that the maximum sensitivity of the SD FD is 4.4 dB greater than

that of the CI FD and achieved when β1 = 0.603 and β2 = 0.104 (curve 1). The

maximum sensitivity of the BD FD (second configuration) is 6 dB greater than the CI

FD and achieved when β1 = β2 = 0.5 (curve 3).

TABLE 5.1: MODELLED AND MEASURED VALUES OF SFD
*

FOR THE 1ST AND 2ND  BD CONFIGURATIONS.
Config. β1 β2 Modeled Measured % Error

1st 0.08 0.99 1.000 0.898 11
1st 0.31 0.88 0.774 0.774 0
1st 0.15 0.50 0.628 0.533 18
2nd 0.31 0.88 1.752 1.467 19
2nd 0.08 0.64 0.584 0.628 7

*normalized to the bold value.

Both configurations of BD frequency discriminators were studied experimentally (see

fig 5.10). A copper cavity housing a single crystal sapphire resonator was coupled to an

interferometer via loop probes and coaxial lines. A phase shifter was inserted in one arm

and an attenuator in the other. The amplitudes of scattered signals were monitored with

a network analyzer. For various coupling coefficients, β1, β2 and different levels of

carrier suppression, the frequency sensitivity was measured and compared to its

calculated value. The results of such comparisons are summarized in Table 5.1. Small

discrepancies between the experimental data and their estimates could be attributed to

errors in measuring the coupling coefficients and loss in the transmission lines, which

were not taken into account in our model.
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Figure 5.9a: Comparison of normalized sensitivities (SFD) maximized by adjusting β1 for a range of
coupling values β2.
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Figure 5.10: Experimental setup studied with vector network analyser.

An examination of the output amplitudes at the carrier-suppressed and “bright” ports in

both BD configurations revealed that their minima were shifted in frequency relative to

each other. Output power verses frequency detuning in the 1st BD configuration is

shown in fig. 5.11 and in the 2nd BD configuration in fig. 5.12. This frequency shift

was found to be due to the loop probe inductance. The remaining discrepancy between

theory and experiment could be due to additional phase shift introduced by the

circulator.
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Figure 5.11: The output power in dBm at the carrier suppressed port (curve 1) and the “bright” port
(curve 2) in the first BD configuration. The gray lines are modeled curves and the black circles are
measured data.
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Figure 5.12: The output power in dBm at the carrier suppressed port (curve 1) and the “bright” port
(curve 2) in the second BD configuration. The gray lines are modeled curves and the black circles are
measured data.

To calibrate the interferometric FD, first, the natural resonance frequency of the high-Q

resonator (fres) is determined. This is achieved by observing the signal either reflected

from or transmitted through the resonator. Secondly, the interferometer is balanced at

the frequency as close to fres as possible. Power of the signal emerging from the

interferometer “dark fringe” is measured to make sure that it is low enough to avoid any

excess flicker noise in the low-noise microwave amplifier of the read-out system. At the

next stage, the frequency of the input signal is modulated with frequency fmod << )(
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Lf∆ .
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This results in a signal at the output of the FD (mixer output) at the modulation

frequency. The index of frequency modulation (ϕm) is then adjusted to avoid any non-

linear distortions of the output signal. The frequency sensitivity of the FD is optimized

through the process of varying the reference phase shift (ϕref) until the amplitude of the

output signal (VFD) is maximized. The frequency sensitivity of the FD is calculated

from: SFD = VFD/(ϕm fmod), provided ϕm is known and the shape of the FD output signal

is close to sinusoidal.

One can estimate the operating frequency range of the FD (∆fmax) within which its

response to frequency variations is linear and characterised by the conversion

coefficient SFD. Knowing that for a typical microwave mixer the maximum amplitude of

the output signal is 0.3 V and using a bi-directional (2nd-configuration) FD with β1 = β2

= 0.5, Pinc = 50 mW and w
ampK µ  = 30 dB results in )(

5.0
3

max 104 Lff ∆×=∆ − . For a SLC

resonator with an unloaded Q-factor of 2 × 105, this evaluates to approximately 360 Hz.

5.5 Phase Noise Floors

The phase fluctuations in a classical electromagnetic oscillator based on a high-Q

resonator originate from both sensitivity of the resonator to environmental perturbations

(temperature fluctuations, vibration etc) as well as from the electronic noise in the active

elements (transistors, Gunn diodes etc) responsible for sustaining oscillations. If

frequency stabilisation of any kind is employed, the noise contribution of oscillator

sustaining stage becomes negligible as compared with that due to intrinsic fluctuations

of the frequency discriminator.  The latter result from various noise mechanisms

including thermal fluctuations, flicker noise of a non-linear mixing stage and non-

thermal fluctuations in voltage controlled and ferrite components of the frequency

discriminator.  Assuming that above noise mechanisms are uncorrelated, their effect on

sensitivity of the FD can be analysed independently. I derive analytical expressions for

partial components of the phase noise floor using a simplified approach of noise power

balance. Such an approach allows an accurate estimate of the FD noise floor provided

that following conditions are satisfied: (i) level of carrier suppression is high enough

(more than dB60 ), (ii) oscillator is tuned at the resonant frequency of the high-Q

resonator and (iii) phase sensitivity of the read-out system is maximised.
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Firstly, the effective noise temperature of the read-out system ( RST ) is introduced

w
amp

mix
ampRS

K

T
TTT µ++= 0 ,                                           (5.25)

where mixT is the effective noise temperature of the microwave mixer and is usually

neglected because of the gain of the microwave amplifier. Energy of the phase noise at

the input of microwave amplifier due to read-out system effective noise temperature

( RST ) is given by

RS
th
n kTE

2

1=δ                                                 (5.26)

Secondly, using the earlier introduced interferometer transfer function ( intT ), energy of

the phase noise at the input of microwave amplifier due to oscillator phase fluctuations

is:

( ) ( )2
int2

�� TS
P

E oscincosc
n ϕδ = ,                                (5.27)

where oscSϕ  is the oscillator phase noise spectral density and � the offset (or Fourier)

frequency. Equating the noise energies given by (5.25) and (5.27) and resolving the

obtained equation with respect to oscSϕ , results in the following FD phase noise floor

due to read-out system effective noise temperature:

( )2
int �TP

kT
S

inc

RSfn
RS =ϕ .                                          (5.28)

In the particular case of optimally tuned FD based on a bi-directional (2nd

configuration) interferometer, (5.28) is transformed into:

( ) 2

5.0










 ∆
=

�

L

inc

RSfn
RS

f

P

kT
Sϕ .                                       (5.29)
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Similarly, the effect of circulator phase fluctuations on the FD phase noise floor can be

evaluated. For the same type of FD, the energy of the phase noise at the input of

microwave amplifier, due to the phase fluctuations in ‘a-b’ section of the circulator (see

fig. 5.7), is given by (5.25) with the oscillator phase noise spectral density, oscSϕ ,

replaced with that of a circulator, circSϕ .  Section ‘b-c’ of the circulator also contributes

to the total noise at the input of the microwave amplifier. This is because of the

additional phase noise acquired by the signal with a partially suppressed carrier when it

propagates through the circulator. The noise energy at the input of microwave amplifier,

due to intrinsic phase fluctuations in the section ‘b-c’ of the circulator, is given by

( ) ( )2
int 0

2
TS

P
E circinccirc

n �ϕδ = .                                          (5.30)

Defining carrier suppression factor as ( )2
int 0T1CS = the total noise energy at the

input of the microwave amplifier due to the circulator phase noise is obtained

( ) ( )






 +=Σ 2

int
1

2
�� T

CS
S

P
E circinc

n ϕδ                                (5.31)

Equating (5.27) and (5.31), the phase noise floor of an optimally tuned bi-directional FD

due to circulator phase noise is found to be

( )
( )


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

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
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
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


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

 ∆
+=

2

5.01
1

�
�

L
circfn

CRL

f

CS
SS ϕϕ .                               (5.32)

As follows from (5.32), increasing the level of carrier suppression can significantly

improve the FD phase noise floor, especially at low offset frequencies ( ( )Lf 5.0∆<<� ),

where the second term in (5.32) (the contribution of  ‘b-c’ section of the circulator)

becomes dominant.

In the general case of the imperfectly tuned FD, its phase noise floor can be found from

a comparison of voltage noise spectra at the FD output resulting from various kinds of
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fluctuations. For example, the effective noise temperature of the read-out system gives

rise to an output voltage noise with a rms value

ampRSBrms KTku κδ = .                                               (5.33)

Considering this noise mechanism as the only one that limits the FD frequency

resolution, its phase noise floor is calculated to be

2













=

�FD

ampRSBfn
RS S

KTk
S

κ
ϕ .                                           (5.34)

The above expression is common for all types of FD analysed here and shows the limit

imposed on the FD phase noise floor by the read-out system effective noise temperature.

It also supports the statement made earlier regarding the parameter SFD as one of the

important figures of merit of the FD (see (5.15)).

Following the noise power balance approach, the phase noise floor of the CI FD due to

phase fluctuations in the circulator may be written as


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ϕϕ .                            (5.35)

Following from (5.35), the circulator noise contribution becomes negligible as

compared with the thermal noise floor as β → 1. It is worth noting that, if most of the

input signal power (Pinc) is dissipated in the resonator of the CI FD, its frequency

sensitivity can approach that of the BD FD (2nd configuration).  For instance, assuming

that β  = 0.95 and two 10-dB directional couplers are used at the input and output of the

interferometer, its thermal noise floor is only 0.9 dB worse than that which could be

achieved in an optimally tuned BD FD.

The phase noise floor of the DR FD, shown in fig. 5.8, is given by
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As in the case of the BD FD, the circulator noise contribution in a DR FD becomes

negligible compared to the thermal noise floor, at high levels of carrier suppression.

Assuming that β → 1 and αP → 1 and making use of (5.32) and (5.36), one can prove

that the phase noise floor of the interferometric DR FD approaches that of the optimally

tuned BD FD.

Finally, the phase noise floor of the SD FD limited by circulator phase fluctuations may

be written as
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As with the CI FD, the circulator noise contribution does not depend on the level of

carrier suppression. For this reason and because 
�

1∝circSϕ , the phase noise floor of

such FDs at low Fourier frequencies (below 100 Hz) is entirely limited by circulator

phase fluctuations (Ivanov et al. 1998b). The similarity of the noise properties of the CI

and SD FDs is due to the fact that the circulator, which is located inside the

interferometer, acts as an intrinsic source of non-thermal fluctuations.

5.6 Conclusion

It has been found that two new configurations of interferometric FDs, the bi-directional

and the dual reflection, are the closest equivalents (in terms of their frequency

sensitivities) to a FD based on a critically coupled resonator suggested in (Ondria 1968).

This equivalence is a result of nearly all the input signal power being dissipated in the

resonator. With sufficient carrier suppression, the circulator phase noise contribution to

the BD and the DR FD’s phase noise floor becomes negligible as compared with that

due to thermal noise.  The second configuration of the BD FD is the best all-round

choice of these interferometer configurations as all power is effectively utilized.  On the

other hand, the DR FD is easier to implement then the BD discriminator with little
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difference in performance if the minimum power possible is dissipated in the

compensating arm.  The first configuration of the BD FD requires no circulator but has

relatively poor sensitivity. A patent has been applied for covering these new

configurations and is reproduced in Appendix A.2. Included in the patent application are

circuit designs of how these interferometric FD may be used in microwave circuits

It should be noted that long term operation of interferometric FDs requires the use of

voltage-controlled components in the interferometer arms. This enables the balance of

the interferometer to be maintained regardless of variations of ambient temperature,

vibration or power dissipated inside the high-Q resonator. The negative side of using

voltage-controlled components is the relatively high level (as compared with thermal

noise) of their intrinsic phase and amplitude fluctuations. These fluctuations can prevent

thermal noise limited performance from being achieved. In such a case, adjusting the

coupling of the resonator inside the interferometer becomes an effective way of

improving the FD phase noise floor.

This chapter has been devoted to the improvement of the interferometric FD sensitivity,

which finds its primary use in low phase noise oscillators as compared with highly

frequency stable oscillators. The latter usually are referred to as ‘clocks’ or flywheel

oscillators and though their phase noise is required to be low, the very high spectral

purity of the oscillator is not the main concern. However, in the course of writing the

patent applications for the discriminator designs that have been explored above, some

schemes have been suggested that may be a benefit to the ultimate stability performance

of ultra-stable low-noise microwave oscillators. Please refer to figs 9–11 of Appendix

A.2.

The following chapter deals expressly with noise reduction techniques employing

modulation at some frequency outside the flicker corner of the microwave amplifiers

incorporated in the signal source. A Pound frequency discriminator is examined. Such a

FD would comprise a major part of the electronics in any successful implementation of

an ultra-stable microwave secondary frequency standard using the resonator developed

in the course of this PhD research. Since the world’s most stable (UWA helium cooled)

oscillators utilise resonators with a Q-factor 100 times greater than the sapphire/rutile

composite resonator described in chapter 4, it is expected that careful consideration

must be given to the frequency control stages of the envisaged oscillator.
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Frequency stability of a classical electromagnetic oscillator based on a high-Q resonator

is influenced by both external and intrinsic noise sources. The former includes, for

example, temperature fluctuations affecting oscillator electronics and the resonator.

Ambient temperature fluctuations in a dielectric resonator induce oscillator frequency

fluctuations due to the non-zero TCP of the dielectric. These can be minimized by

designing the resonator with a zero-valued TCP at some temperature, as described in

previous chapters. The latter includes intrinsic noise produced by the oscillator

sustaining (ie. amplifier) and frequency control stages (ie. frequency discriminator).

Some of these noise sources will be addressed in this chapter.

6.1 Pound Frequency Discriminator

6.1.1 Frequency Discriminator Sensitivity

There are many types of frequency discriminators. In this chapter, I will focus on the

Pound (Pound 1946) frequency discriminator (subsequently referred to as FD), which is

commonly used as a frequency sensor in the control electronics of microwave secondary

frequency standards.

Fig. 6.1 shows a schematic of such a discriminator that was used in these experiments.

The sensitivity (frequency-to-voltage conversion ratio) of the Pound FD can be found

by analyzing the signal through each component.
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Figure 6.1: Experimental setup: Pound frequency discriminator. A non-dispersive equivalent load was
substituted for the high-Q resonator.

The bias point of the voltage-controlled-phase shifter (VCP) is set at a fixed offset (ubias)

and summed with a modulated signal at a frequency Ω and amplitude Vm. The resulting

phase modulation index, to first order, is given by

 )( biasVCPmm u
V

V ϕϕ
∂
∂=                                               (6.1)

where ϕVCP is the phase shift of the VCP, a function of the bias voltage. If a microwave

signal )cos( 0tVc ω , of amplitude Vc and angular frequency ω0 = 2πf0, is input into the

VCP, the output signal may be represented as a carrier signal,

)cos()( 000 ϕωϕ +tJV mc and two sidebands )sin()( 01 ϕωϕ +±tJV mc at angular

frequencies ω± = ω0 ± Ω. Here ϕ0 is the phase shift ϕVCP at the fixed bias point ubias. J0

and J1 are Bessel functions of the phase modulation index (ϕm).  The signal reflected

from the cavity (labelled “equivalent load” in fig. 6.1) is

)sin()cos(2)()cos(ˆ)( 001000 ϕωϕϕϕωϕ +Ω+++Γ ttJVtJV mcrmc ,                (6.2)

where Γ̂  is the reflection coefficient given by 
ξβ
ξβϕ

j

j
e ri

++
−−=Γ=Γ

1

1ˆˆ , and

)(
2

)( 0
0 resosc

resosc

res

res

osc Q
Q ωω

ωω
ω

ω
ωξ −≈−= , β is the resonator coupling coefficient and

ωosc and ωres are the oscillator and resonator angular frequencies. When the oscillator is
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optimally tuned at ωosc = ωres = ω0 then 
1

1ˆ
+
−=Γ

β
β

. So when β = 1, zero carrier signal is

reflected from the cavity. However, off resonance when ωosc = ωres ± Ω,

111ˆ −≈





∆

Ω±++





∆

Ω±−−=Γ
resres

jj
ω

β
ω

β  provided Ω  >> ∆ωres. Here ∆ωres is

the resonator bandwidth divided by 2π. Therefore, well outside the resonator bandwidth

the side band signal is fully reflected. The amplitude of the reflected signal (6.2) may be

re-written as

)cos(2)()}ˆIm()ˆ){Re(( 10 tJjVjJV mcmc Ω+Γ+Γ ϕϕ                      (6.3)

A diode detector’s output voltage (udet) is a function of the input microwave power. As a

result, by grouping the real and imaginary terms in (6.3) and squaring, the detector

output signal is,

{
( )})2cos(12)cos()ˆIm(4

)ˆIm()ˆRe(

2
110

22
0

22
0det

tJtJJ

JJPu pincp

Ω++ΩΓ+

Γ+Γ= αγ
           (6.4)

where γP is the diode detector conversion ratio (in Volts/Watt) and insertion loss defined

by αP = Pout/Pinc. Pinc, Pout, are the power incident on and out of the VCP, respectively.

For small modulation index the power incident on the resonator Pres ≈ αP 
Pinc. Because

the output signal from the detector is then demodulated in an RF mixer at the

modulation frequency (Ω), the dc and high frequency terms may deleted and (6.4)

becomes

)cos(]ˆIm[)()(4 10det tJJPu mmPincp ΩΓ= ϕϕαγ                             (6.5)

Now the output signal from the mixer ( mixu ) is the product of detu and LOu  where LOu

is the local oscillator (LO) drive signal (uLO cos(Ωt)). Hence,

)](ˆIm[)()(4 10 ξϕϕαηγ Γ= mmPincPmix JJPu                                (6.6)

where η is the RF mixer conversion ratio. The discriminator sensitivity is defined as the

slope of (6.6) on resonance. That is
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where ∆ω0.5 is half the bandwidth of the resonance divide by 2π. After adding the gain

of the low noise RF amplifier, RF
ampK , at the output of the RF mixer and the gain of the

microwave amplifier, w
ampK µ , placed in front of the detector, SFD becomes

resf

Q
mm

w
ampresP

RF
ampFD JJKPKS 0

2)1(

4
10 )()(4

β
βµ ϕϕγη

+
=  .               (6.8)

If the detector is operating in the small signal regime, γP is independent of power and

can be assigned a constant value. However, this is not true at high incident detector

power where γP decreases with power (see fig. 6.2). Two detectors are shown. For both

at low input power, γP is constant. This is evidenced by constant slope below -10 dBm.
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Figure 6.2: Output voltage verses incident power for the two microwave diode detectors used.

6.1.2 Insertion Loss in Phase Shifters

During the course of the experiments with the set-up in fig. 6.1 three different VCPs

were tried. Now, from (6.1), the phase modulation index (ϕm) is determined from the

slope of the phase shift as a function of applied control voltage. Curve 1 in fig. 6.3 is

typical for all the VCP used here. Curves 2 to 4 are the measured insertion loss (αP) for

W

V
P ∂

∂=γ
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three different VCPs used. Notice curves 2 and 3 have turning points at one or more

values of the bias voltage.
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Figure 6.3: Phase shift as a function of bias voltage for a VCP (curve 1) and insertion loss for three
different VCPs (curves 2-4).

We can define the amplitude modulation index, αm,

)(
)(2 biasp

biasp

m
m u

Vu

V α
α

α
∂
∂=                                        (6.9)

which is a function of the slope of the insertion loss (curves 2 to 4 in fig 6.3), which in

turn is a function of the bias voltage. Assuming the instantaneous voltage at some bias

point in the presence of modulation to be )()( tuutu mbias += , then the output amplitude

of a VCP is

{ })cos(1)( tuV mbiasPin Ω+αα                                        (6.10)

where )( biasP uα has been expanded in a Taylor series to first order about the bias

point (ubias). Setting the carrier amplitude, )( biasPinc uVV α= , then the output voltage

of the VCP may be represented by a carrier signal, )cos( 0tVc ω and two sidebands,

)cos( 02 tV m

c Ω±ωα .  These off-resonance side bands are reflected from the cavity with

a reflection coefficient of –1. Therefore, knowing this and that the carrier is reflected

with a reflection coefficient of Γ̂ , then from (6.10), assuming no amplifier, the
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amplitude of the input signal to the detector is { })cos(ˆ tV mc Ω−Γ α . Expanding Γ̂  into

its real and imaginary parts and squaring, the detector output signal is,

{
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          (6.11)

Again, because the output signal from the detector is then demodulated in an RF mixer

at the modulation frequency (Ω), the dc and high frequency terms may deleted and

(6.11) becomes

)cos(]ˆRe[2det tPu mresp ΩΓ= αγ                                   (6.12)

which when demodulated in the RF mixer gives us the mixer output signal

22

22

)1(

1
2

ξβ
ξβαηγ

++
+−= mrespmix Pu                                     (6.13)

When the oscillator is optimally tuned (at ωosc = ωres = ω0), 
1

1
]ˆRe[

+
−=Γ

β
β

. So in order

to keep to a minimum the noise produced by spurious AM modulation, due to the

variation in insertion loss around the bias point, the coupling should be set as close to

unity as possible. Also, since this is not always technically possible, the bias voltage

should be chosen to be as close to where αm = 0. That is, where the insertion loss has a

turning point when expressed as a function of bias voltage.

6.1.3 Measurement System Noise Floor

To test the noise floor of the measurement system, the input to the digital-volt-meter

(DVM) was terminated with 50 Ohms and the Allan deviation of the fractional voltage

calculated from the measured voltage fluctuations (curve 1 in fig. 6.4). This was then

compared to the Allan deviation of the voltage fluctuations out of the FD without the

microwave amplifier (and ϕm = 0.036). Two cases are shown in fig. 6.4, one with (curve

3) a low noise amplifier (LNA), with a gain of 10, at the output of the RF mixer and the

other without (curve 2). If curve 3 was reduced by a factor of 10, equal to the LNA gain,
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it would drop below the DVM noise floor for τ < 50 s. To be certain that the data would

not be limited by the DVM noise floor, the LNA gain was increased to 100 in all

subsequent measurements.
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Figure 6.4: A typical Allan deviation voltage measurement without the microwave amplifier in the Pound
circuit. The noise floor (curve 1) was determined by measuring voltage fluctuations into the DVM from a
50 Ohm termination.

6.1.4 Experimental Results and Discussion

In order to evaluate the noise contribution of the FD electronics to the oscillator

frequency instability, a non-dispersive equivalent load was substituted for the high-Q

resonator as shown in fig. 6.1. From (6.8) it is clear that in order to maximise SFD,

coupling (β) should be close to unity, the Q-factor high and J0(ϕm)J1(ϕm) should be

maximized. The latter is achieved at ϕm = 1.08. However, when ϕm << 1, J0(ϕm)J1(ϕm) =

ϕm/2.

Initially, without the microwave amplifier, the σu resulting from voltage fluctuation

measurements was calculated. Assuming the resonator to have a Q-factor of 107 at 9

GHz, FD
yσ  was calculated. All other parameters were held constant except modulation

index. The bias voltage was maintained at the point where the amplitude modulation

index was zero. The resulting FD
yσ  at 16 s integration time, is shown in fig. 6.5. The

theoretical fit to data is quite good and a verification that the modeling is consistent with

the experiment. The data point at ϕm = 0.007 may be above the line because the ϕm was
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estimated too high due to some technical problems with the electronics in the early

stages of the experiment.
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Figure 6.5: Allan deviation of the FD due to its electronics as a function of modulation index when all
other parameters were held constant. The broken curve indicates the expected dependence at low
modulation index.

A microwave amplifier was then introduced before the detector to study its effect on the

FD output voltage noise. The input power to the amplifier was varied between –40 to –

26 dBm by making use of the attenuator (α). The Allan deviation of fractional voltage

fluctuations at the output of the FD (σu), with two different detectors, measured as a

function of input power to the detector (Pdet) is shown in fig. 6.6. The measurement time

was chosen to be 16 s.

Even though detector #2 had lower power-to-voltage conversion efficiency than

detector #1 (see fig. 6.2), it was found to be intrinsically less noisy (curves 3 and 4 in

fig. 6.6). The power levels at which detectors 1 and 2 enter the regime of saturation are

–3 dBm and 0 dBm, respectively. In such a regime the power-to-voltage efficiency of

the detector is no longer constant and reduces with power. Apart from that, intensity of

voltage fluctuations at the output of the FD increases with power (see fig. 6.6). This was

found to be mainly due to detector excess noise with 1/f spectral density.

The effect of amplifier flicker noise on Allan deviation of fractional voltage fluctuations

in the saturation regime was evaluated by removing the microwave amplifier from the

FD and monitoring the output voltage noise while maintaining the same level of power
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incident on the detector. For instance, the data given in curves 1 and 2 in fig. 6.6 were

measured with the FD based on detector #1. Curve 1 corresponds to the FD with the

microwave amplifier installed and curve 2 corresponds to the conventional FD without

the microwave amplifier.
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Figure 6.6: Allan deviation (at 16 seconds integration time) of voltage fluctuations of the FD electronics
using detector #1 with a microwave amplifier before the detector (curve 1) and without the amplifier
(curve 2). Measurements were repeated with the same microwave amplifier and detector #2 (curve 3) and
without the amplifier (curve 4). All measurements were taken using the same voltage controlled phase
shifter (VCP) and phase modulation index.

As seen in fig. 6.6, introducing the microwave amplifier into the FD results in a 2…4

dB increase in Allan deviation of the fractional voltage fluctuations, when power  –3

dBm < Pdet < 3 dBm. Voltage noise measurements were performed at a modulation

frequency of 1 MHz to minimize the contribution of flicker noise of the detector.

Repeated measurements at a higher modulation frequency of 10 MHz did not reveal any

significant difference.

Combining data in fig. 6.6 with (5.10) and (6.8) enabled the calculation of the limit

imposed on the fractional frequency fluctuations of a cryogenic oscillator by the FD

electronic noise. Again, I have assumed a 9 GHz resonator with a Q-factor of 107,

typical for a frequency-temperature compensated 77 K sapphire resonator (Tobar et al.

1998a). The phase modulation index was held constant at 0.07 during all measurements,

at a constant bias point close to the turning point in the insertion loss. The AM

modulation index (αm) was calculated to be 0.002. The RF mixer conversion ratio (η)

was measured at 0.58 V/V. The small signal gain of the RF ( RF
ampK ) and the microwave
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( w
ampK µ ) amplifier were measured to be 40 dB and 33 dB, respectively. The detector

conversion ratio (γP) was measured to be 743 mV/mW and 640 mV/mW for detectors 1

and 2, respectively, at Pdet = –10 dBm.

The value of )16( sFD
yσ  for different FD configurations and components is plotted in fig.

6.7 as a function of power incident on the resonator (Pres). For instance, curve 1 shows

)16( sFD
yσ  for a conventional Pound FD based on detector #1, that is, the circuit in fig.

6.1 without the microwave amplifier or attenuator. Curve 2 corresponds to )16( sFD
yσ  of

this FD with the addition of an amplifier having a small signal gain of 33 dB. In both

cases, a resonator coupling coefficient β = 0.8 was assumed. This corresponded to a

total power (carrier plus sidebands) reflected from the resonator of approximately 18 dB

below Pres.

In the absence of a microwave amplifier, the detector becomes saturated when Pres ≈ 15

dBm, which explains the knee in the plot of )16( sFD
yσ  versus Pres occurring at this

power level (curve 1). If the amplifier with 33 dB gain is introduced, Pres must be kept

below –18 dBm to avoid detector saturation and to minimize its effect on oscillator

frequency stability.  As follows from a comparison of curves 1 and 2, the same

minimum value of )16( sFD
yσ , close to 10-15, can be attained at power levels limited by

saturation of the detector. Increasing or decreasing the modulation index simply

translates the curves horizontally. The above calculations were repeated for a FD based

on detector #2, first, without the microwave amplifier (curve 3) and then with the

microwave amplifier introduced (curve 4). Finally, )16( sFD
yσ  was calculated for the FD

comprising the 33 dB amplifier, detector #2 and a critically coupled resonator (curve 5).

In such a case, values of )16( sFD
yσ  close to 2 × 10-16 were obtained. It can be shown

that to achieve such a performance a circulator with more than 26 dB of isolation is

required, to avoid detector saturation by signal leakage.

Data in fig. 6.7 clearly demonstrate that the addition of the amplifier reduces the Allan

deviation of fractional frequency fluctuations, at the same level of incident resonator

power, by the amount of the amplifier gain, provided the small signal operation of the

detector is ensured. This is due to a reduction of FD effective noise temperature.
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Figure 6.7: Allan deviation (at 16 seconds integration time) of frequency fluctuations due to the FD
electronics as function of power incident on the resonator.

6.2 Index of Spurious AM Fluctuations

The experiments, described in this chapter, studied separately noise mechanisms

affecting the frequency stability of a Pound-stabilised oscillator. These noise

mechanisms involve conversion of the voltage fluctuations at the output of the FD into

oscillator frequency fluctuations.

In the first case, there are the voltage fluctuations arising from the intrinsic fluctuations

in a microwave detector and RF mixer. These fluctuations can be described in terms of

effective noise temperatures, as well as, in terms of the microwave oscillator AM noise

at Fourier frequencies near the Pound modulation sidebands. Secondly, the spurious

amplitude modulation (AM) generated by the VCP is responsible for down conversion

of microwave oscillator near carrier AM noise into the FD output voltage fluctuations.

The former has been examined in detail above, where the AM index (αm) was chosen to

be very low. According to (6.13), if on resonance and either αm = 0 or β = 1, the AM

noise contribution is annulled. In this section, the AM noise contribution has

deliberately been increased to measure its magnitude. The spectrum of the near carrier

AM noise includes components which are not only due to the microwave oscillator
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intrinsic AM noise, but also those which result from the VCP bias fluctuations and AM

fluctuations of the modulating signal.

The insertion of the switch into the experimental setup (in fig. 6.1) permitted us to

separate the above two mechanisms. When the switch was open the output voltage noise

(δu1) was due to detector’s noise temperature and microwave source amplitude noise at

frequencies close to Pound modulation sidebands. By measuring the Allan deviation of

relative voltage fluctuations (δu1), I evaluated the oscillator fractional frequency

stability by assuming the certain values of resonator Q-factor, coupling, phase

modulation index, and incident power on the resonator.

When the switch was closed, the output voltage became

( )2
det

2
12 . mVuu δαδδ +=                                         (6.14)

where Vdet was twice dc voltage at the mixer output, under operating conditions and δαm

was the equivalent rms fluctuations of the AM modulation index. The parameter δαm

may be thought of as a symbolic sum of partial AM index fluctuations caused by: (i)

VCP bias fluctuations, (ii) near carrier AM noise of microwave oscillator and (iii) near

carrier AM noise of the modulating source.

The voltages, δu1 and δu2 were measured over a range of phase modulation index, while

keeping the AM modulation index constant by varying the bias point and modulation

amplitude. Then the Allan deviation of δu1 and δu2 were calculated and are denoted σu1

and σu2, respectively. Initial measurements, with the bias point near where the AM

index (αm) equals zero, in one of the VCPs, resulted in no measurable difference

between δu1 and δu2.  The data taken here, where αm = 0.0145, is shown in fig. 6.8. The

power into the VCP was -10 dBm and Pdet = –12 dBm. The bias point was controlled

through a LM399H voltage reference.

Rearranging (6.14)

2
1

2
2

det

volt1
uuRF

amp
m

VK
σσσ −=                                   (6.15)
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where σm is the Allan deviation of fluctuations of the AM index (αm).
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Figure 6.8: Allan deviation of voltage fluctuations at the output of the mixer in fig 6.1 for various values
of the phase modulation index (ϕm) shown in legend, and constant AM  index (αm) = 0.0145.

The relationship between the amplitude index fluctuations and oscillator frequency

fluctuations can be obtained from (6.6) and (6.13).

( )
m

mLff
ϕ

δα
β
βδ 5.02

1 ∆−= ,                                              (6.16)

where )(
5.0
Lf∆  is a loaded half-bandwidth of the resonator. Knowing mσ , the AM index

fluctuation contribution to an oscillator’s fractional frequency stability, σ y
osc , can be

derived from (6.16) as

m
Lm

osc
y Q

σ
ϕβ

β
σ 1

4

1−
= .                  (6.17)

The calculation of (6.17) was applied to the data of fig. 6.8 and the result is shown in

fig. 6.9, for an integration time of 16 s. The coupling (β) was chosen at 0.8 and

resonator loaded Q-factor at 107.
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Figure 6.9: Allan deviation due to AM index fluctuations (data points) for an oscillator with resonator
coupling of 0.8, a Q-factor of 107 and αm = 0.014. The broken line is curve of best fit.

The above analysis is only valid for integration times at, which σu1 is significantly less

than σu2. If they are comparable it means that the effect of spurious AM index

fluctuation is not significant as compared with that caused by detector effective noise

temperature. In fig. 6.8 the data close to “no modulation” line fall into this category and

result may be viewed as an upper limit only.

The line drawn in fig 6.9 is the line of best fit. Within the added error bars, that intersect

the curve fit, there is a small dependence on the PM index. The AM index was

nominally held constant at some non-zero value, away from the turning point in the

insertion loss curve of the VCP. The oscillator Allan deviation arising from AM index

fluctuations is well below our target level of 10-14. In the case of the liquid helium

sapphire clock, fluctuations of the AM index are a significant noise source, which

required the development of a VCP bias control circuit. However, from this analysis,

only if one operates well away from the zero in the AM index is it a significant effect.

6.3 Cryogenic Interferometer

The benefits of using an amplifier in conjunction with the critically coupled cavity are

quite apparent (compare curves 3 and 5 in fig. 6.7). In practice, the equivalent of a

critically coupled resonator is obtained by suppressing the reflected carrier in an

interferometer configuration (Ivanov et al. 1998b). However, introducing
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interferometric carrier suppression will cause additional oscillator frequency

fluctuations due to temperature induced fluctuations of the interferometer phase

mismatch (��). The latter are related to temperature fluctuations (�T) by

T
T

l
c

δε
ε

ωδ
∂
∂∆=Ψ 1

            (6.18)

where �l is the arm length mismatch, c  the speed of light, ω  the angular frequency of

the oscillator, ε  the relative dielectric permittivity of the dielectric material used in the

transmission lines of the interferometer arms and 
T∂

∂ε
ε
1

 the TCP. The TCP for Teflon at

77 K was estimated to be 4 × 10-4 from its thermal expansion coefficient (Touloukian

1970).  From the Allan deviation of fractional temperature fluctuations ))(( τσ T of a

liquid nitrogen bath (77.3 K) (curve 3 in fig 7.8), and a solid nitrogen bath (53 K),

formed by pumping constantly on the liquid (curve 4 in fig 7.8), the effect of

interferometer phase mismatch on oscillator instability can estimated. The solid nitrogen

data was very close to the measurement noise floor and as a result should be viewed as

an upper limit. Over integration times, s161 << τ , then







=×≤

=×−
=

−

−

KT

KT
T

52106

3.7710106
)(

0
7

0
6

τσ ,                                 (6.19)

which is an equivalent bath temperature instability δT ~ 0.5 – 1 mK at 77.3 K and δT ~

30 µK at 52 K. Knowing )(τσ T , the oscillator fractional frequency stability due to

temperature induced fluctuations of phase mismatch can be estimated (Ivanov et al.

1998a).

)(
12

4

1
)( 0

0

2

τσε
ε

π
β
βτσ T

res
y T

T
l

cQ

f

∂
∂∆−= .                         (6.20)

Substituting (6.19) into (6.20), with unloaded bandwidth fres/Q0 = 103 Hz, T0 = 77 K, ∆l

= 5 cm and β = 0.8, results in )(τσ y (curve 1 in fig 6.10). It is more than an order of

magnitude greater than the limit imposed on the oscillator frequency stability by the FD

electronics (curve 3). Here it is assumed Pres = 15 dBm and detector #2 is used. With T0
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= 52 K, )(τσ y  is again calculated (curve 2 in fig. 6.10). The result is slightly greater

than curve 3.
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Figure 6.10: Allan deviation limit imposed by phase mismatch in cryogenic interferometer arms in a
liquid nitrogen bath (curve 1) and in a solid nitrogen bath (curve 2). Allan deviation limit imposed by the
electronics of a conventional Pound FD (curve 3) where Pres = 15 dBm

As follows from (6.20), active temperature control of the interferometer at a level of δT

~ 20 µK at T0  = 50 K or 10 µK at T0  = 77 K is needed to reach the limit set by the FD

electronics noise (curve 2 in fig. 6.10). This would result in a fractional frequency

instability of a few parts in 10-15 for integration times, τ < 16 s. At this level, the

implementation of the interferometric technique would offer the advantage of near

perfect carrier suppression.

6.4 Cryogenic Amplifiers

6.4.1 Introduction

The concept of using a microwave amplifier at the input to the diode detector (in fig.

6.1), provided the carrier is sufficiently suppressed has been explored in the preceding

sections of this chapter. In the liquid helium sapphire clock the diode detector has been

operated in the cryogenic environment to reduce its relatively high noise temperature

(Luiten 1995). This fact led to the following experiments to investigate the noise
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performance of cryogenic HEMT amplifiers that could be potentially used in such a

cryogenic environment.

The development of ultra-low noise HEMT amplifiers has enabled the design of ultra-

sensitive microwave measurement systems with sensitivity primarily limited by thermal

fluctuations. Such measurement systems are based on principles of microwave circuit

interferometry and have already enabled the study of noise phenomena in microwave

components, which have been previously considered to be noise free (Ivanov et al.

1998b). The enhanced sensitivity of interferometric measurement systems is achieved

by suppressing the carrier at the output of the interferometer and introducing a low noise

microwave amplifier in front of the non-linear mixing stage. The carrier suppression

greater than 109 dB measured in (Ivanov et al. 1998a) ensures that the microwave

amplifier in the readout system operates under small signal conditions, thereby insuring

that it is devoid of flicker noise. In such a case, the noise contribution of the non-linear

mixing stage becomes negligible as compared with that of the amplifier, provided that

the gain of the amplifier is sufficiently high.

Cryogenic HEMT amplifiers have a great potential for precision measurements. In a

Pound stabilised microwave oscillator, where the carrier has been suppressed by either

employing an interferometer or the more conventional method of critically coupling the

resonator, the input power into the amplifier is determined by the reflected side-band

power. This power needs to be kept low to avoid saturating the amplifier. However, a

reduction in the Allan deviation was observed (fig. 6.7), due to a reduction of the

effective noise temperature (TRS) of the readout system. Without the amplifier it maybe

written as det0 TTTRS += but adding an amplifier it becomes

w
amp

w
amp

ampRS
K

T

K

T
TTT µµ

detdet
0 ≈++=                                         (6.21)

where Tdet and Tamp are the detector and amplifier effective noise temperatures,

respectively.  By adding the amplifier, TRS is reduced. From (6.21) it follows that

significant advantage of adding the amplifier is dependent on 
w

amp
amp

K

T
T µ

det< . In this
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case, the noise temperature of the readout is lowered by the amount of the amplifier

gain.

6.4.2 Experimental method

A schematic diagram of the experimental apparatus for measuring the effective noise

temperature of cryogenic microwave amplifiers is shown in fig. 6.11.

ϕ

liquid helium in cryostat

amplifier

α

spectrum analyser

mixer

microwave
oscillator

phase shifter

attenuator

Figure 6.11: Experimental setup.

It consists of a microwave oscillator, a double balanced mixer and a phase-bridge

formed by the amplifier and a phase shifter. By changing the phase shift, the phase-

bridge can be tuned insensitive to power fluctuations of the microwave oscillator, which

is essential for correct measurement of the noise temperature. The optimal tuning of the

phase-bridge is achieved by modulating the amplitude of the incident microwave signal

and suppressing the signal at the modulation frequency at the output of the mixer. Under

such conditions rms voltage fluctuations at the mixer output are given by

mix
w

ampampo kTKTTku ++= µκδ )(1 ,                                (6.22)

where κ is a parameter characterizing power-to-voltage conversion of the mixer, Tmix is

the effective noise temperature of the mixer. The parameter w
ampK µ  includes the loss in

the transmission line between the amplifier and the mixer and was measured in a

separate set of experiments.
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The second term in (6.22) reflects the mixer contribution to the total voltage noise. It

was measured with the amplifier by-passed while maintaining the same level of

microwave power at the input of the mixer. In such a case the rms value of the output

voltage fluctuations equals

mixkTu κδ =2                                                 (6.23)

Combining (6.22) and (6.23) allows the amplifier effective noise temperature to be

found











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w
amp

ow
amp

amp
K

T
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uu
T µµκ
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2

2
2

2
1                                  (6.24)

6.4.3 Results and Discussion

Three types of cryogenic amplifiers were tested. One was an X-9.0-20H from Berkshire

Technologies, which was specially optimised for operation at liquid helium

temperatures.  The other two were an AFS2-09500-14-CR two-stage and an AFS3-

0950-12-CR-4 three-stage from Miteq Inc. These were standard room temperature

amplifiers with the voltage regulator removed to enable cryogenic operation.

At liquid helium temperature, the small-signal gain of the Berkshire amplifier was equal

to 33 dB. It dissipated 25 mW of dc power. The small-signal gain and dissipated dc

power of the Miteq amplifiers was 23 dB and 60 mW in the two-stage and 33 dB and

150 mW in the three-stage, respectively. The three-stage amplifier had a small-signal

gain of 32 dB at 77 K and 28 dB at room temperature.

Fig. 6.12 shows the effective noise temperature of the liquid helium cooled Berkshire

amplifier as a function of input power (Pinc).  As seen from fig. 6.12, the amplifier’s

effective noise temperature (Tamp) remains close to 6 K  as long as the input power does

not exceed –80 dBm. At Pinc ≥ -80 dBm, Tamp increases rapidly with input power. In this

regime, Tamp depends on Fourier frequency as 1/f.  This is due to the flicker noise

induced by the input signal.
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Figure 6.12: The effective noise temperature of the model X-9.0-20H amplifier as a function of input
power, and for different Fourier frequencies: 10 Hz (1), 100 Hz (2), 1 kHz (3) and 10 kHz (4). Ambient
temperature 4.2 K, signal frequency 9 GHz, dissipated dc power 20 mW.

For comparison, the effective noise temperatures of the Miteq amplifiers are shown in

fig. 6.13 (curves 1 and 2) with the Berkshire amplifier (curve 3) at 1 kHz Fourier

frequency. In the small signal regime the effective noise temperatures of both the

Berkshire and the Miteq two stage amplifiers are almost identical, but at higher input

power (Pinc ≥ -80 dBm) the difference between two amplifiers becomes apparent. In this

regime the effective noise temperature of the Miteq amplifier increases faster with Pinc

than that of Berkshire amplifier.

When Pinc = –40 dBm, Tamp = 2 × 103 K in the 3-stage Miteq amplifier, and higher for

the others. For a Pound FD, employing the 3-stage microwave amplifier, Tamp <<

Tdet/
w

ampK µ  = 1.5 × 108 K where Tdet = 3 × 1011 K (Pdet = -7 dBm) measured in detector

#1 at the modulation frequency of 1 MHz just outside the flicker corner. So the Miteq 3-

stage amplifier would be the best choice to use as a cryogenic amplifier in front of the

detector in fig. 6.1. It would result in an order of magnitude lower noise temperature to

the readout (6.21), than the other two.

However the threshold effective noise temperature of this amplifier (Pinc < -60 dBm)

was about 30 K. For the other two liquid-helium-cooled HEMT amplifiers (curve 1 and

3 in fig. 6.13) Tamp was about 6 K , provided that the power of the input signal is low

enough (Pinc < -80 dBm). Such amplifiers, when used with a suitable motion sensor
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(that is, a parametric transducer (Blair et al. 1995)), will allow the development of

microwave displacement measurement systems with a noise floor comparable to that of

a large-scale laser interferometer.
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Figure 6.13: The effective noise temperature of the AFS2-09500-14-CR two stage amplifier (curve 1), the
AFS3-0950-12-CR-4 three stage amplifier (curve 2) and the X-9.0-20H amplifier (curve 3) as a function
of input power. Fourier frequency is equal to 1 kHz, ambient temperature 4.2 K and signal frequency 9
GHz.

6.5 Conclusion

Providing the small signal operation of the detector, adding an amplifier to the FD of a

Pound stabilized oscillator reduces the Allan deviation due the electronics voltage noise

by an amount equal to the power gain of the amplifier. A short-term frequency stability

due to FD electronics noise of 2 × 10-16 is potentially achievable when the resonator is

critically coupled. Interferometric carrier suppression techniques can be considered as a

means of implementing a critically coupled resonator. However, temperature induced

fluctuations of interferometer phase mismatch necessitate active temperature control of

the interferometer at the level of 10 µK at 77 K and 20 µK at 50 K. As part of this

research, a temperature control system was investigated and shown to be capable of

achieving this level of temperature stability over the temperature range 50 K to 77 K,

which is accessible with liquid or solid nitrogen.
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In this chapter, I present our investigations into the temperature induced frequency-

stability noise, expected in both a near-room-temperature, thermoelectric-cooled and a

cryogenic, liquid-nitrogen-cooled stabilised oscillator. Two experiments are outlined;

one where the temperature fluctuation in a 283 K stabilised sapphire loaded cavity

(SLC) are measured and the second where the same measurements are repeated for the

SLC between 50 and 77 K.

7.1 Temperature Fluctuations in a 283 K Oscillator

A copper cavity loaded with a sapphire resonator (d = 31 mm, L = 30 mm) was inserted

into a bench top vacuum chamber with a thermoelectric (Peltier) module. The cavity

was cooled to 283 K and stabilised through a lock-in circuit developed by Poseidon

Scientific Instruments Pty Ltd. The circuit employed a thermistor bonded to the base of

the cavity close to the Peltier element. The thermistor was incorporated into an ac

bridge to control the temperature around a set point. To monitor the temperature

fluctuations in the copper cavity another nominally identical thermistor was attached

close to the other.

7.1.1 Voltage Divider Read-out

A read-out involving a dc voltage divider was implemented as shown in fig 7.1.

Voltages were read out by the DVM and recorded on a computer. An additional

thermistor was attached to the surface at the center of the sapphire cylinder, to measure

the temperature fluctuations at the sapphire element. Also a low thermal sensitivity,
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precision resistor was also glue to the base of the copper cavity to measure the noise

floor of the read-out. In the case of the precision resistor the measured fractional voltage

fluctuations can be written as

Thd

Th

DVM

Thd

Th

RR

R
E

u

E

E

RR

R
E

u

+

⊕=

+

δδδ 1  ,                                          (7.1)

whereas for the thermistors, the fractional voltage fluctuations measured as

Thd
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+

δδδδ 2 ,                            (7.2)

where δE and δuDVM represent the voltage fluctuations of the battery and the DVM

respectively. The parameter δuTh represents the voltage fluctuations across the

thermistor.

Rd

RTh
DVM

E

Figure 7.1: The dc voltage divider used to measure voltage fluctuations in a thermistor (RTh). The driver
voltage (E) was supplied by a low noise alkaline battery (nominally 9V), and voltage division by a high
precision low temperature coefficient resistor (Rd).

The symbolic sum represents the fact that noise is added and only after the statistical

variances are calculated can arithmetic operators be applied. In this case, σu1 and σu2,

were calculated and are shown in fig. 7.2. They are the Allan deviation of δu1 and δu2,

respectively. Now, σu1 is the noise floor of the measurement system (the precision

resistor – curve 4 in fig 7.2) and σu2 is the signal that we are measuring (the thermistor –

curves 1- 3 in fig. 7.2). Curve 1 and 2, respectively, represent the Allan deviation of

fractional voltage fluctuations with and without an insulated box covering the apparatus.

Curve 3 represents the σu2 when a thermistor was glued to the base of the cavity very

near the control thermistor. I then measured the voltage fluctuations, δE of the battery,



PART 2: NOISE SOURCES AND STABILISATION IN SECONDARY FREQUENCY STANDARDS

186

and δuDVM directly, and calculated their Allan deviation (curve 5 and 6, respectively).

Also, shown in fig. 7.2 (curve 7), is the Allan deviation of the fractional voltage

fluctuations of a similar room temperature thermistor.
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Figure 7.2: Allan deviation of fractional voltage fluctuations as a function of integration time in the
Peltier cooled cavity at 283 K. Curves 1 and 2 are the results of temperature fluctuations measured at the
sapphire directly with and without an insulating box coving the apparatus. Curve 3 results from a
thermistor attached to the base of the copper cavity near the Peltier. Curve 4 is the noise floor of the
measurement system, obtained by attaching a metal film resistor to the base. Curve 5 and 6 are
separately measured noise floors of the battery and DVM as used in the measurement system. Curve 7 is
the result of the temperature fluctuations measured in the laboratory.

7.1.2 Temperature Fluctuations

For small voltage fluctuations across the thermistor (δu), using the chain rule, and

where Rd > 2 RTh ,

T
RR

R

T

R

R
E

RR

R
Eu

Thd

ThTh

ThThd

Th δδδ 





+∂

∂
+

+
≈

1
                             (7.3)

The dimensionless sensitivity of a thermistor is defined as
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T

R

R

T
T Th

Th ∂
∂

=)(θ .                                                   (7.4)

Dividing (7.3) by E, and neglecting the δE/E term (assuming the battery is very low

noise), after re-arranging, the fractional temperature fluctuations may be written

)( 00 T

u

T

T Th

θ
δδ = .                                                       (7.5)

After removing any long-term drift from δuTh, due to drift in the battery voltage, using

(7.5), the Allan deviation of fractional temperature fluctuations are calculated.

      
)( 0T

u
T θ

σ
σ =                                                         (7.6)

with measured thermistor coefficient θ(283) = 10.6.
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Figure 7.3:Allan deviation of fractional temperature fluctuations at 283 K in the temperature stabilised
cavity (left axis) and due to room temperature fluctuations in the lab (right axis). Curve 1 refers to the
sapphire element and curve 2 to the base of the copper cavity. Curve 3 corresponds to the ambient
fluctuations in the lab. Curves numbered 1, 2 and  3 correspond with curves 1, 3, and 7 in fig. 7.2.

The result is shown in fig. 7.3. To reduce the effects of the ambient temperature

fluctuations the apparatus was placed in an insulated box (curve 1 in figs 7.2 and 7.3).
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Curve 2 in fig. 7.3 shows the Allan deviation of the fractional temperature fluctuations

at the base of the copper cavity. It crosses curve 1 at 25 s, indicating the effect of the

passive thermal filtering of the sapphire time constant, which has been measured to be

of the order of 32 s. Curve 3 represents the fractional temperature fluctuations in the lab.

The thermoelectric module has therefore reduced the ambient temperature fluctuations

by 3 orders of magnitude at integration times, τ < 5 s (curve 3). The filtering effect of

the sapphire thermal time constant further reduces them by another order of magnitude

(curve 1).

7.1.3 Frequency Fluctuations

Provided temperature fluctuations are the dominant noise mechanism, the fractional

frequency fluctuations of an oscillator may be related to the fractional temperature

fluctuations of the resonator by

00

0

0 T

T

T

f

f

T

f

f δδ






∂
∂= .                                              (7.7)

After calculating the Allan deviation of both frequency and temperature fluctuations

(7.7) becomes

Ty T

f
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T
σσ 


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
∂
∂=

0

0 .                                             (7.8)

Since the Allan deviation of measured voltage fluctuations (curve 1 in fig. 7.2) is close

to the measurement noise floor (curve 4), the resulting temperature fluctuations (curve 1

in fig. 7.2) should be viewed as an upper limit. However, these data were used to

calculate the expected Allan deviation of fractional voltage fluctuations according to

(7.8) and is (curve 1) shown in fig. 7.4. Very good agreement is observed between the

predicted value from temperature measurements at 283 K (curve 1), and that calculated

from beat frequency measurements at 273 K (curve 2) (McNeilage 1999), in an

oscillator with an identical temperature control system. The latter was experimentally

measured with two frequency stabilised oscillators (with dissipated power = 300 mW)

using automatically balanced interferometers.  This allows us to then predict, a priori,
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the Allan deviation for other oscillators at both room temperature and at liquid nitrogen

temperature.
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Figure 7.4: Curve 1 shows the Allan deviation of fractional frequency fluctuations inferred from curve 1
in fig. 7.3 and the known temperature coefficient of sapphire (Tobar et al. 1997b). The solid black circles
(curve 2) are measured values (McNeilage 1999) of Allan variance for two nominally identical 9 GHz
oscillators using the same temperature controller.

7.2 Temperature Fluctuations in a 50 K - 77 K Oscillator

Similarly to the previous section, I investigated the temperature dependence of

temperature induced frequency fluctuations of an oscillator based on a rutile-sapphire-

compensated resonator.

7.2.1 Thermometers

Initially, a few different thermometers were investigated and their dimensionless

coefficients, θ(T) defined in (7.4), are compared in fig. 7.5. Over our desired

temperature range the platinum resistance thermometer (PRT) (curve 1) had the highest

value, but even so this is poor compared to the carbon-glass (curve 2) used in the helium

clock with θ(6 K) = 3, but an order of magnitude lower temperature, therefore 30 times

better by comparison. So for our investigations I used the platinum resistance

thermometer (PRT), but for future developments, some novel devices (Kersale et al.

1999; Kersale et al. 1998) will be investigated.
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In order to estimate the value of σT, the temperature fluctuations of a liquid nitrogen

bath at atmospheric pressure (curve 1 in fig. 7.8) were measured. Also the temperature

fluctuations at the copper cavity, (see monitor PRT in fig. 7.9) housing the sapphire

resonator, were measured but the result was not distinguishable above the noise floor

(curve 2 in fig 7.8).
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Figure 7.5: Dimensionless coefficients of 5 resistance thermometers measured over the range of 50 to 77
K. Curve 1 was a standard platinum strip (PRT), curve 2 a carbon-glass Lakeshore CGR-1-2000 type,
curve 3 an Alan Bradley resistor, curve 4 a Neocera CryoHybrid, and curve 5 was a Scientific
Instruments (USA) ruthenium oxide RO105 type thermometer.

7.2.2 AC Bridge Read-out

238 Hz
150 mV

2 kΩ

RB RPRT

10 Ω
DVM

E

amp

cryogenic
environment

Figure 7.6: The ac bridge used to measure voltage fluctuations in a Platinum resistance thermometer
(RPRT).

Therefore, in order to improve the resolution of the measurement system, a bridge with

ac excitation (fig 7.6) was implemented. The ac-bridge circuit was part of the
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temperature controller mentioned earlier, and the measurements were carried out by Mr

P. Bilski (an honours student in our research group).

The bridge driver voltage (E) was supplied by an on-board constant amplitude (150mV,

238 Hz) signal oscillator. The bridge was balanced using the variable resistor (RB). The

2 kΩ and 10 Ω resistors were high-precision low-temperature coefficient type resistors.

Only the PRT and its leads were in the cryogenic environment. The bridge error voltage

was amplified by an ac-coupled amplifier, then demodulated and read out on a DVM

and recorded by computer. Using this arrangement, the voltage fluctuations out of the

bridge (normalised by the bridge sensitivity) were recorded using a PRT positioned in

the cryogenic fluid just above the brass vacuum can. The results are plotted in fig. 7.7

for the liquid nitrogen bath (curve 1) and when the nitrogen was solidified (curve 2) by

pumping constantly on the fluid bringing the pressure down below 10-1 torr. The latter

was maintained at around 52K. The measurement system noise floor (curve 3) was

measured with a metal-film 10-Ω low-temperature-coefficient resistor. The solid

nitrogen data is very close to the noise floor at short integration times, and should only

be considered as an upper limit.
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Figure 7.7: The Allan deviation of voltage fluctuations out of the bridge (normalised by the bridge
sensitivity).

A Neocera LTC-21 temperature controller was implemented with a control PRT

situated very close to the small 30 W foil heater attached to the copper post supporting

the cavity (see fig. 7.9) attached to the cryostat insert. The copper post was connected to
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the brass vacuum can by a stainless-steel post and 3 mounting bolts. When the vacuum

was sustained, the stainless steel provided good thermal impedance, and allowed the

temperature to be stabilised at a chosen set point, above the bath temperature. In this

case, the voltage fluctuations at the output of the bridge are shown in fig 7.7 for 58.5 K,

60.5 K and 80 K but are not really distinguishable from the noise floor. The data

acquisition electronics noise floor was noticed to not always be the same and therefore

the observed spread at curve 3 in fig 7.7 is understandable. However, the results for the

liquid (curve 1) and solid nitrogen (curve 2) were sufficiently above the noise floor.

7.2.3 Temperature Fluctuations of Liquid and Solid Nitrogen Bath

Now, the voltage fluctuations at the output of the mixer are related to the temperature

fluctuations of the PRT by

0
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∂

∂≈ .                                 (7.9)

If the bridge stays balanced the noise from the source is rejected synchronously. (There

was some drift in the electronics and was subtracted to eliminate its effects). From (7.9)

after re-organising
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and after taking averages
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≈  .                                         (7.11)

From the data in fig. 7.7, σT has been calculated for liquid and solid nitrogen and

compared with the previous measurement for liquid nitrogen in fig. 7.8. The

discrepancy possibly arises between curves 1 and 2, at short integration times, due to the

location of the PRT in the liquid. For curve 1 it was lowered into the top portion of the
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boiling fluid through the top of the dewar, but for curve 2 it was positioned deep down,

just above the vacuum can.
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Figure 7.8: The Allan deviation of fractional temperature fluctuations of a liquid nitrogen bath (curve 1)
and its associated measurement noise floor (curve 2) measured with voltage divider. Also, the Allan
deviation of fractional temperature fluctuations of a liquid nitrogen bath (curve 3) and a solid nitrogen
bath (curve 4) measured with the ac-bridge. Curve 5 is the measured room temperature fluctuation.

7.2.4 Thermal Time Constants

The temperature controller stabilises the temperature at the point where the PRT is

located very close to the heater. The level at which I was able to control the temperature

at the cavity is shown below but the temperature stability at the sapphire resonator

depends on the thermal resistance and heat capacity of the sapphire dielectric itself.

Using data taken from (Touloukian 1970) for the thermal conductivity (kTh) and the

specific heat (cp) of sapphire and rutile, I calculated the thermal time constants (tTh) for

the rutile rings and the sapphire resonator (fig. 7.10) using the relation







=

Th

p
Th k

c

A

L
Mt                                                        (7.12)

where M , L and A are the mass, length and area of the dielectric material in the path of

the heat flow to the copper shield. Because the mass of the rutile is small with respect to

sapphire, in fact, over the temperature range, 50 – 77 K, the thermal time constant for
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the rutile rings (of 0.4 mm thickness) is 5 …18 times less than for the sapphire resonator

alone.
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Figure 7.9: Simplified design of the cryostat insert showing brass vacuum can and resonator loaded
copper cavity. Black arrows indicate path of heat flow.
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Figure 7.10: Thermal time constants of the sapphire resonator and the rutile rings.

Therefore, provided the surface contact zones of the rutile annuli and the sapphire do

not introduce large thermal resistance, the rutile ring do not limit the time constant of

the resonator. Surface roughness will have the effect of increasing the time for the

different pieces to come into equilibrium with each other. Also it is worth noting from

fig. 7.10 that in the sapphire dielectric at 50 K the tTh is 18 times shorter than at 77 K,

though the numbers are 4 and 72 ms, respectively. This indicates that the thermal time

constant associated with heat path shown in black arrows in fig. 7.9 will come from the

interfaces between sapphire and the copper cavity lids and between the gaps in the

structure which haven’t been modelled. From fig. 7.10, at 283 K, tTh is approximately

21.2 s in excellent agreement the estimate from fig. 7.2 in section 7.1.

7.2.5 Loop Oscillator

With the temperature servo running, the temperature fluctuations could not be measured

using the ac-bridge because the measurement system noise floor was not sufficiently

low enough. At the same time, a free running loop oscillator was implemented as shown

schematically in fig. 7.11. It incorporated a JCA Technology JCA1114-412 (11 – 14

GHz) amplifier, a custom-made band-pass filter, a mechanical phase shifter and a

mechanical attenuator. The loop was constructed in die-cast aluminium box anchored to

a 16 mm aluminum plate, with stainless screws. The amplifier was thermally grounded

to the base-plate. The resonator coupling on both probes was approximately 0.005, set
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previously to measure the Q-factor of the resonance as a function of temperature. This

resulted in a resonator insertion loss of 44 dB, measured at the top of the dewar. As a

result, no Pound frequency discriminator and electronic noise reduction servo was

implemented. However, the free running oscillator was used to get an estimate of the

effects of temperature fluctuations on oscillator frequency stability. The gain margin of

the oscillator was set at 5 dB. The frequency was down-converted by beating it with a

HP8673G synthesizer locked to an Oscilloquartz 5 MHz reference, and counted on a

HP53131A frequency counter.

To determine the stability of the HP synthesizer, I used another similar synthesizer,

model number HP8673H, and with both referenced by there own internal quartz 10

MHz quartz oscillators, recorded the beat frequency of two 12.03 GHz signals separated

by about 65 kHz. The Allan deviation of fractional frequency fluctuations was

calculated. Without the external reference, the synthesizer has 1.1 × 10-12 stability at 1 s

rising to 2.5 × 10-12 at 100 s. The Oscilloquartz reference oscillator has been measured

to have ~3 × 10-13 stability, and as a result the HP8673G synthesizer, referenced to this

oscillator, should have this stability too.

ϕ

SLC resonator         liquid or solid nitrogen in
cryostat

band-pass
filter

11-14 GHz
amplifier

α

computer

frequency counter
HP53131A

mixer

synthesizer
HP8673G

high stability
quartz reference

phase
shifter attenuator

Figure 7.11: Schematic of loop oscillator used.

The Allan deviation of fractional frequency is plotted in fig. 7.12 at various set

operating points (58.5 K - curve 4, 60.5 K - curve 2). In both cases the vacuum pump
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was running constantly keeping the nitrogen solid, while the 30 W foil heater raised the

cavity temperature to the set point. Also the Allan deviation fractional frequency was

calculated for the free running oscillator at 77 K without the temperature servo

operating (curve 3) or the vacuum pump running. The latter was repeated with the

vacuum pump running (curve 1). It is observed that curve 1 is significantly higher than

curve 3, indicating that the vacuum pump adds a vibration induced noise contribution.

Secondly, as the temperature is lowered, the fractional frequency stability of the

oscillator appears to reach a noise floor (curves 3 and 4 run into each other). Also with

the temperature servo operating (and the vacuum pump) the stability at 60.5 K (curve 2)

is marginally worse than at 77 K without any pump or the temperature servo (curve 3).

It would appear that the combined noise floor due vacuum pump adding noise (for

example, due to lack of isolators in the coaxial line) and the temperature servo intrinsic

noise floor is near this level. At this stage it is impossible to determine which source is

dominating which.
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Figure 7.12: Allan deviation of fractional frequency at 58.5 K (curve 4) and 60.5 K (curve 2) with the
temperature servo running  and at 77 K without the temperature servo running; (curve 3) vacuum pump
off) and (curve 1) vacuum pump on. The phase noise floor is the Allan deviation of fractional frequency
calculated from a phase noise measurement of the active components of the loop oscillator under the
same power conditions and bandwidth as the 77 K oscillator.

7.2.6 Temperature Fluctuations in Resonator

Using measured values of the dimensionless temperature coefficient of frequency, TCF

= 
T

f

f

T

∂
∂

0

0 (calculated from fig. 4.32 and shown in fig. 7.13) and σy in (7.8), the
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temperature control inferred from the oscillator’s frequency stability can be calculated.

From three measurements of oscillator frequency at 77, 60.5 and 58.5 K (curves 3, 2

and 4 in fig. 7.12), σT was calculated and shown in fig. 7.14 (curves 1, 2 and 3)

respectively. It has been assumed here that the frequency instability is solely due to the

temperature instability. From curves 2 and 3, it appears that this assumption is not

completely valid as those measurements are closer to the turning point temperature at

53.8 K, and TCF is considerably reduced as compared with the 77 K measurement

(curve 1). Other noise sources are at least partially affecting these measurements. These

include measured amplifier phase noise resulting in an oscillator frequency instability at

the 1.7 × 10-12 level, room temperature induced changes in the loop oscillator and level

changes in the bath affecting the permittivity and length of the coaxial microwave

transmission lines. The lack of isolators near the cavity and the vacuum pump

continually running would exacerbate these effects.

From the 77 K measurement, the expected temperature stability (curve 1) was mostly

free of other noise sources since no pump was running and the oscillator was operated

are well away from the TP. The latter meaning, in this case, the frequency stability

measurement was dominated by temperature instability. The temperature stability at the

cavity (at T0 = 77 K) was about 1 µK at 1 s rising to 10 µK at 100 s. From a comparison

of the liquid and solid nitrogen temperature fluctuations in fig. 7.8, it is expected that

the temperature fluctuations at the cavity in a solid nitrogen bath (curve 4 in fig. 7.14)

would be an order of magnitude less than those due to a liquid nitrogen bath (curve 1).

Assuming the passive filtering effects of the cavity design are linear, the temperature

instability at the cavity can be estimated to be 100 nK at 1 s rising to 500 nK at 100 s.

The inferred temperature stability at T0 = 60.5 K (curve 2) from frequency

measurements is about 100 times greater than this. The calculated temperature stability

at 58.5 K and 60.5 K (curves 2 and 3 in fig. 7.14) incorrectly estimates the temperature

stability because the frequency data (curves 2 and 3 in fig. 7.12) from which they are

derived are close to the oscillator-frequency noise floor.

To measure the temperature instability more precisely using the oscillator frequency

stability, isolators must be added to the microwave loop in the cryogenic environment, a

Pound electronic noise reduction servo must be implemented with a critically coupled

cavity and careful attention must be paid to the minimisation of resonance in the

microwave coaxial lines that connect the loop oscillator to the resonator. All this will be
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done in the next phase of the development of the compensated-resonator oscillator,

which due to time and salary limitations cannot be the subject of this thesis.
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Figure 7.13: The absolute value of the dimensionless parameter (T/f)df/dT for the 12.03 GHz H8,1δ mode
in the sapphire-rutile compensated resonator (curve 2) calculated from the data of fig. 4.32, compared
with the dimensionless sensitivity of the 11.88 GHz H14,1,δ mode in pure sapphire (curve 1).
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Figure 7.14: Allan deviation of fractional temperature fluctuations estimated from fractional frequency
fluctuations (fig. 7.12) using the gradient of the frequency-temperature dependence derived from the data
in fig. 7.13. Curves 1, 2 and 3 are correspondingly calculated from curves 3, 2 and 1 in fig. 7.12,
respectively. Curve 4 is inferred from the order of magnitude lower Allan deviation of fractional
temperature fluctuations of the solid nitrogen bath over that of the liquid bath.

When operating an oscillator with a temperature-compensated resonator (7.7) must be

replaced by
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where the fractional frequency 
TP

TP

f

ff −
 sufficiently close to TTP can be expressed as a

quadratic function of (TTP – T) and fTP is the frequency at the turning point. Here ∆T =

|T-TTP|, which represents the operating temperature offset from the turning point. Using

(3.19) and provided the frequency fluctuations are temperature induced, after taking

averages on both sides, (7.13) becomes

TT TTPy ∆⋅⋅⋅= σζσ                                                 (7.14)

Based on the estimate for σT (curve 4 from fig. 7.14), the measured fractional curvature

in the H8,1,δ mode at the TTP = 53.8 K of ζ = 8 × 10-8 (curve 2 from fig. 4.32) and

assuming ∆T = 1 mK, the Allan deviation of fractional frequency fluctuations due to

temperature control can be estimated. Here σy = 6.4 × 10-18 at 1 s rising to 4 × 10-17 at

100 s. Therefore the temperature control requirements are considerably relaxed, even

increasing ∆T by 100 times the temperature induced noise floor is still less than the

target of 1 × 10-14 at 1 s.



CHAPTER 8: CONCLUSION

201

��������'

��
������


The frequency-temperature compensation in microwave sapphire resonators doped with

Ti3+ ion has been explained in terms of the Van Vleck temperature independent

paramagnetic (TIP) susceptibility of Ti3+ in sapphire. This also led to the inclusion of a

small concentration of Mo3+ ions (a manufacturing impurity) to explain the frequency-

temperature dependence below 10 K. The compensation point in the frequency-

temperature dependence was found to be dependent on the magnetic-energy-filling

factor in the sapphire and the Ti3+ ion concentration. The annulment temperatures

ranged between 4 and 80 K. The effect of TiO2 clusters in sapphire on frequency-

temperature dependence of E-modes was also studied.  Such an effect was found to be

much weaker than that due to paramagnetic ions.

The Q-factor of a titanium-doped sapphire resonator increased exponentially as the

temperature was reduced below 10 K. This was explained in terms of Orbach double-

resonant-phonon process with characteristic energies equivalent to temperatures of 54 ±

1 K and 27 ± 1. Essentially, as the resonator temperature approaches absolute zero, the

paramagnetic ions are less and less able to exchange energy with the crystal lattice

because the specific phonons, which mitigate the exchange, are exponentially reduced

in number.  The paramagnetic susceptibility of the titanium-doped sapphire crystal and

the relaxation rate of the Orbach loss process were uniquely determined.

This study shows that in order to design a resonator with the highest Q-factor and

frequency-temperature turning point around 50 K (which is attainable without the use of

liquid helium), the titanium-doped sapphire resonator (i) must have the concentration of

Ti3+-ions of approximately 200 ppm and (ii) be excited in whispering gallery H-modes.

Assuming that an optimally-designed resonator is used for oscillator frequency

stabilisation and its temperature controlled with an accuracy of 100 µK within 1mK of
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the compensation point, the fractional frequency stability of the corresponding oscillator

is expected to be of the order 2 × 10-14 over short-to-medium integration times.

Unfortunately, such a performance cannot be achieved because of the resonator’s

relatively low Q-factor of 2 × 106. The latter makes the oscillator susceptible to intrinsic

voltage fluctuations of the frequency control system, which could limit frequency

stability to the 10-13 level.

Rigorous analysis of sapphire-rutile frequency-temperature compensated resonators has

been presented. The condition to obtain a low spurious mode density and high-Q

resonance that has a low environmental susceptibility was established. To lessen the

spurious mode density rutile rings, rather than disks, were proposed (Tobar et al.

1999a). A high Q-factor of 3 × 107, mainly limited by dielectric loss, was obtained with

an annulment temperature of 56 K. The criteria for choosing the thickness of the rutile

rings, enabling the reduced sensitivity of the compensation temperature to

manufacturing tolerances, was discussed.  The dependence of the resonator Q-factor on

the thickness of rutile rings both in the anti-resonance and resonance regimes has been

investigated. Slots cut in the end plates of the copper cavity and filled with microwave

absorber were found to be effective in the suppression of spurious modes. The cavity

walls were silver-plated to reduce the surface losses.

In the anti-resonance regime the compensation temperature is only a weak function of

rutile ring thickness.  With this in mind, a composite sapphire-rutile resonator was

constructed and an unloaded Q-factor of 1.5 × 107 was measured. This was nearly an

order of magnitude greater than that achievable with Ti3+ doping of sapphire at the same

TTP = 50 K.  Assuming the same temperature stability of 100 µK within 1mK of the

compensation point, the fractional frequency stability due to temperature control was

estimated be 4 × 10-15 over short-to-medium integration times.

New configurations of microwave frequency discriminators have been analysed and

tested. It was shown that using either the bi-directional or the dual-reflection

configurations, the frequency sensitivity 6 dB higher than that of the conventional

discriminator could be achieved. This is due to the more effective use of signal power,

when it is almost entirely dissipated in the resonator. A provisional patent has been

applied for.
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Improvements of a Pound frequency discriminator have been investigated.

Characterising the performance of a frequency discriminator in terms of its effective

noise temperature, the latter can be significantly reduced by introducing a microwave

amplifier before the detector. In a small signal regime of operation, the limit imposed on

the oscillator frequency stability by the intrinsic noise in the frequency discriminator

was estimated as low as a few parts in 1016. The effect of AM noise, due to the

instability of the bias of the voltage controlled phase shifter in the Pound circuit, was

also estimated and found to be of the order of a few parts in 1015.

Finally, the temperature stability of a solid-nitrogen cooled resonator was investigated.

It was found that the platinum resistance thermometer (PRT) was the best available,

with the highest sensitivity in the range of 50 – 70 K. Initially, using an ac bridge

readout, the temperature stability of both liquid and solid nitrogen baths were measured.

Next, with a commercial temperature controller a free-running microwave loop

oscillator was implemented, based on a temperature-stabilised resonator of the sapphire-

rutile ring design, with a turning-point temperature at about 52 K. Measuring the

oscillator frequency variations and making use of the temperature-to-frequency

conversion of the resonator, its temperature stability was calculated at temperature at 77

K and 50 K.

The results obtained here indicate that the fractional frequency stability of the proposed

secondary frequency standard, based on a solid-nitrogen cooled sapphire-rutile

resonator, due to temperature fluctuations should be well below 10-14 over short-to-

medium measurement times.
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